Prepared for:

October 2022

WOLF ARCHITECTURE

Kodiak Fire Station Geotechnical Report

Prepared by:

PND Engineers, Inc. 1506 West 36th Avenue Anchorage, AK 99503

TABLE OF CONTENTS

1 I	Introdu	uction1			
2 1	Backgr	ound2			
2.1	His	toric Land Use2			
2.2	Bor	rehole Locations			
2.3	Inv	estigation Description3			
2.4	Exp	loration Areas4			
3 9	Subsur	face Characterization4			
3.1	Lab	oratory Classification4			
3.2	Soi	l Properties in Summary5			
3.	.2.1	Soil Type and Gradations5			
3.	.2.2	Moisture Content5			
3.	.2.3	Atterberg Limits6			
3.3	Beo	drock6			
3.4	Des	sign Soil Profiles			
3.	.4.1	Upper Elevation			
3.	.4.2	Lower Elevation			
3.5	Gro	oundwater Depth 11			
3.6	Sei	smic Design 11			
3.	.6.1	Liquefaction Analysis 11			
3.7	3.7 Global Stability				
4 (4 Geotechnical Design Recommendations13				
4.1	Fou	Indation Recommendations			
4.	.1.1	Maximum Allowable Bearing Pressure 13			
4.	.1.2	Depth of Embedment			
4.	.1.3	Settlement (non-liquefaction)			

4.1.	4	Settlement (liquefaction)	15
4.1.	5	Lateral Load Resistance	15
4.2	Soil I	Parameters for MSE Wall	15
4.3	Pave	ement Design	15
5 Co	nstruc	ction Recommendations	16
5.1	Site	Recommendations	16
5.2	Site	Preparation	16
5.3	Exca	vations	16
5.4	Draiı	nage and Control of Water	16
5.5	Fill a	nd Compaction	16
5.5.	1	Footings and Slabs	17
5.5.	2	Utilities and Open Areas	17
6 Lin	nitatic	ons	18
APPE	NDIX A	A — Borehole Logs A	\-1
APPE	NDIX E	B — Summary of Sample Characteristics B	3-1
APPEI	NDIX (C — Grain Size Distribution C	:-1
APPEI	NDIX [D — Moisture Content by Depth D)-1
APPEI	NDIX E	E — Corrected SPT Blow CountsE	<u>-1</u>
APPE	NDIX F	F — Atterberg LimitsF	[:] -1

TABLE OF FIGURES

Figure 2-1. Project Location Vicinity Map2	
Figure 2-2. As-built Borehole Locations with building footprint in red and property lot lines in black	

Figure 3-4. Design Response Spectra at project site 11
Figure 4-1. Allowable Bearing Capacity of Continuous Footing on slope (Panel A) and off slope (Panel B) at project
site

Figure E- 1. Corrected SPT Blow Counts (N1)70 vs. Elevation at the project site..... E-2

LIST OF TABLES

Table 2-1. As-built Borehole Locations	3
Table 3-1. Summary of Laboratory Tests	4
Table 3-2. Representative Gradation Properties	5
Table 3-3. Average Moisture Content of Project Site	5
Table 3-4. Depth and elevation to bedrock at the project site. Elevation shown with vertical datum of MLLW	6
Table 3-5. The Kodiak Fire Station Idealized Soil Profile at Upper Elevations	8
Table 3-6. The Kodiak Fire Station Idealized Soil Profile at Lower Elevations	8
Table 3-7. Seismic Design Parameters	. 11
Table 4-1. Recommended Soil Parameters for MSE Wall Design	. 15

Kodiak Fire Station Geotechnical Investigation Report

1 INTRODUCTION

PND Engineers, Inc. (PND), together with Discovery Drilling, Inc. (Discovery), performed a geotechnical investigation to characterize surface and subsurface soil conditions at the location of the future Kodiak Fire Station (KFS) in Kodiak, Alaska. The geotechnical investigation was performed in support of a design and construction of a fire station structure and parking area at 1240 Mill Bay Road (Figure 2-1).

This Data and Recommendations Report contains six appendices:

- ✓ Appendix A Borehole Logs presents the complete borehole log set from the exploratory borings of this investigation.
- ✓ Appendix B Summary of Lab and Field Characteristics presents the complete summary of results from the lab testing program and field/ice characteristics for all the samples.
- ✓ Appendix C Particle Size Distribution Plot showing the complete set of particle size distribution plots (gradations) as performed in the lab program.
- ✓ Appendix D Moisture Content by Depth Plot
- ✓ Appendix E Corrected SPT Blow Counts
- ✓ Appendix F Atterberg Limits

2 BACKGROUND

The following sections summarize the findings of the geotechnical investigation at the site.

Figure 2-1. Project Location Vicinity Map

2.1 HISTORIC LAND USE

The lot at 1240 Mill Bay Road was previously developed for residential use from at least the 1950s. The most recent available aerial image showing residential use was taken in 1978. Historical records provided by the City of Kodiak show that the site previously consisted of several lots, similar in dimension and orientation to neighboring lots, before being re-platted into a single lot in 1979. No historical aerial images were recovered for the period from 1978 to 2004 with sufficient resolution to determine the use of the property. By 2004, the concrete retaining wall had been constructed to its current state and all other structures were absent.

2.2 BOREHOLE LOCATIONS

Nine boreholes covering the building footprint and parking area were advanced to depths between 14.3 and 25.3 feet below-ground-surface (bgs). Bedrock was encountered in all boreholes. The approximate elevation, latitude, and longitude of the Kodiak Fire Station boreholes are provided in Table 2-1. These locations were determined by hand-held GPS in the field. Elevations are provided in Mean Lower Low Water (MLLW) and were determined by PND Surveying from 2022. As-built locations are presented in Figure 2-2.

	[†] Elevation		
*Borehole	(ft)	Latitude	Longitude
BH-1	123.3	57.79714°N	152.38970°W
BH-2	122.9	57.79704°N	152.38990°W
BH-3	120.3	57.79703°N	152.38974°W
BH-4	116.2	57.79691°N	152.38974°W
BH-5	117.3	57.79699°N	152.38960°W
BH-6	111.7	57.79678°N	152.38968°W
BH-7	107.4	57.79688°N	152.38934°W
BH-8	120.3	57.79712°N	152.38949°W
BH-9	121.1	57.79693°N	152.39011°W

Table 2-1. As-built Borehole Locations

† Measured from Mean Lower Low Water (MLLW)

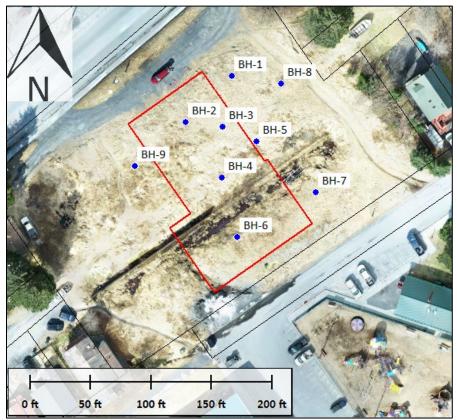


Figure 2-2. As-built Borehole Locations with building footprint in red and property lot lines in black.

2.3 INVESTIGATION DESCRIPTION

The drilling program took place on June 1 and 2, 2022. The drilling was performed using a Geoprobe 6712 DT. The field sampling advanced a 3-inch outside diameter (O.D.) Modified Standard Penetration Test (SPT) split spoon sampler. The sampler was advanced 18 to 24 inches using a 340-pound automatic drop-hammer free-falling 30 inches per stroke. The number of blows required to drive the sampler each 6-inch interval was recorded on the

borehole logs. The blow counts shown on the borehole logs are field values that have not been corrected for overburden, rod length, sample size, or other factors.

Samples were collected every 2.5 feet to 10 feet bgs, then every 5 feet for the remainder of the borings to obtain representative samples of the subsurface soil conditions. The recovered soils were field-classified following the United Soils Classification System (USCS) according to ASTM D2487. Representative samples were transported to PND's AASHTO certified Anchorage Soil-Material Lab for field verification and lab testing.

2.4 EXPLORATION AREAS

Boreholes were completed June 2, 2021, and were advanced to depths of 14.3 to 25.3 feet bgs depending on subsurface conditions and bedrock depth. The project site slopes downward in the direction from Mill Bay Road to Chichenoff Street. There is approximately 45 feet of level terrain from Mill Bay Road to top-of-slope. From Mill Bay Road, level with top of slope (Elev. 125 ft.), to Chichenoff Street (Elev. 100 ft.) the slope is on a 14% grade. The lot has two pedestrian trails on the east and west ends to travel from Mill Bay Road to Chichenoff Street. A derelict retaining wall structure bisects the lot from west to east for approximately 240 feet up to the east pedestrian trail traveling from north to south. Along Chichenoff Street, there is approximately 9 ft. of overburden from ground surface to street elevation. PND understands that the City of Kodiak plans to excavate overburden along Chichenoff Street and bring it to street level elevation.

The borehole logs are shown in Appendix A. The following is a general description of subsurface soil, depth to bedrock, and groundwater conditions at each location during the field investigation.

3 SUBSURFACE CHARACTERIZATION

This section summarizes the soil characteristics of the geotechnical exploration advanced at KFS. The characterizations are based on field logging observations and lab testing of field collected samples performed for this investigation. The following sections present and discuss the laboratory testing program and results.

3.1 LABORATORY CLASSIFICATION

Representative samples from the SPT sampler were collected and sealed in freezer bags to maintain in-situ moisture content. The samples were then transported to PND's Soil Material Laboratory in Anchorage for testing. All tests were performed to ASTM standards where applicable. A total of 63 lab tests were performed (Table 3-1).

Lab characterizations included the following tests:

- Moisture Content/Classification (ASTM D4318)
- Description and Identification of Soils—Visual-Manual Procedure (ASTM D2487, D2488)
- Particle Size Analysis (ASTM D422)
- Fines Wash (ASTM D1140)
- Atterberg Limits (ASTM D4318)

Table 5-1. Summary of Laboratory Tests				
Test Type	Quantity			
Moisture Content with Classification	53			
(ASTM D2487 / D2488 / D2216)	55			
Gradation of Soils (ASTM D6913)	4			
Fines Wash (ASTM D1140)	4			
Atterberg Limits (ASTM D4318)	2			

Table 3-1. Summary of Laboratory Tests

The results of the laboratory testing program are shown in Appendix B, C, D, and G. The appendices include a comprehensive tabulated summary of test results and classifications. The appendices also include grain size distribution plots, moisture contents by depth, and Atterberg Limits plots. Lab results are shown in the borehole logs at corresponding columns with given soil lithologies.

3.2 Soil Properties in Summary

The following sections describe the soils encountered at the Kodiak Fire Station and summary descriptions of soil properties, such as moisture content and lithologies. Lithologies are described in tabulated format with idealized soil type by depth, moisture content, and representative gradations of coarse-grained soils. Lithology descriptions for the Kodiak Fire Station subsurface are shown as a graphical cross-section along the slope and across the upper elevation boreholes. These cross-sections were developed from field observations, interpreted borehole logs, laboratory tests, and professional judgement (Figure 3-2 and Figure 3-3).

3.2.1 SOIL TYPE AND GRADATIONS

Table 3-2 shows representative gravel, sand, and fines fraction of the gradations performed on the soils. D_{50} defines the particle size at which 50% of the soil is smaller than. P_{10} describes the percent passing the #10 sieve (2-mm), a useful value in characterizing gravel behavior. Although the P_{10} particle size is classified as coarse sand, when present in sufficient quantity in the gravel matrix it behaves synergistically with the gravel particles to increase strength and stiffness in compacted fill materials. Nominal average gravel particle size was approximately 1-inch.

Soil Type Fractions (%)		D50	P10		
Material Type	Gravel	Sand	Fines	(mm)	(%)
Silty Clayey Sand with Gravel, (SC-SM)g	19	37	44	0.2	70
Silty Clayey Sandy Gravel, s(GC-GM)	37	36	27	1.4	54
Silty Clayey Sand, SC-SM	12	42	46	0.1	76

Table 3-2. Representative Gradation Properties

The majority of the particles were sub-angular in their angularity description. Angular aggregate encountered during sampling was likely fractured during drilling action and not representative of actual conditions. Weathered bedrock fragments were typical prior to encountering refusal. The gradation curves for the samples are shown in Appendix C.

3.2.2 MOISTURE CONTENT

Table 3-3 provides a summary of the average representative moisture contents by soil type at the project site. Moisture content (MC) by depth for individual boreholes are shown in Appendix D, the attached lab Summary of Sample Characteristics in Appendix B, and Borehole Logs in Appendix A.

	MC Range	MC Average	
Soil Type (USCS)	(%)	(%)	
OL	32.0 - 153.4	62.0	
CL-ML	-	31.0	
SC-SM/SP	10.1 - 33.7	21.9	
g(SC-SM)/(SC-SM)g	6.5 – 13.3	9.0	
s(GC-GM)/(GC-GM)s	5.2 - 10.2	7.7	

Table 3-3. Average Moisture Content of Project Site

3.2.3 ATTERBERG LIMITS

Two Atterberg tests were completed on BH-4, Sample 3 and BH-7, Sample 3 to determine the fines material. The samples varied in color and soil type. The test results are provided in Appendix D. Material displayed properties on the interface of CL-ML and CL. A final Atterberg result of CL-ML was assigned to the soil material tested.

3.3 BEDROCK

Bedrock was encountered in all boreholes ranging from 14.3 to 25.3 feet bgs. Effort was made by Discovery to verify bedrock if auger drilling stalled by advancing the auger annulus plug bit with the 340-lb hammer to try to knock through potential cobbles. If the plug bit advanced then the augur was drilled further until modified SPT sample met refusal and verified with recovered bedrock sample or from drilling observations such as grinding sounds, drill rig lifting, and/or vibrations felt at ground surface. Recovered bedrock samples were brittle and fractured along planes, indicative of shale material. Bedrock elevation varied across the project site with the deepest between 68 and 98-foot elevation MLLW. There is a depression around BH-3 where the bedrock elevation is lowest relative to surrounding borehole bedrock elevations. Table 3-4 provides the competent depth bgs and elevation of bedrock across the project site. Figure 3-1 is a rendering of bedrock elevation to show approximate surface detail on the slope.

Competent Bedrock		Competent Bedrock
Borehole	Depth bgs (ft)	Elevation (ft)
BH-1	14.3	109.1
BH-2	15.2	107.7
BH-3	22.6	97.7
BH-4	15.2	101.0
BH-5	18.7	98.7
BH-6	25.3	86.4
BH-7	16.2	91.2
BH-8	19.2	101.1
BH-9	17.8	103.3

Table 3-4. Depth and elevation to bedrock at the project site. Elevation shown with vertical datum of MLLW.

Figure 3-1. Rendering of potential bedrock surface with elevation noted at peripheral borehole locations. Panel A is a profile view looking northeast. Panel B is a profile view looking north. Panel C is a profile view looking northwest. The bold arrow indicates the slope direction. Elevation shown in MLLW vertical datum.

3.4 DESIGN SOIL PROFILES

Based on the corrected SPT blow counts and lab results, the determined soil profile and properties are provided in Table 3-5 and Table 3-6. Appendix E shows corrected SPT blow counts versus elevation for all boreholes located at the project site. Blow counts were corrected to $(N_1)_{70}$ using standard correlations found in most geotechnical texts. An idealized soil profile was determined for upper and lower elevation boreholes due to soil encountered during investigation. The upper elevation boreholes are BH-1, -2, -3, -8, and -9. These boreholes are located below the firetruck bay and upper driveway and parking area. The lower elevation boreholes are BH-4, -5, -6, and -7. These boreholes are at the transition from the firetruck bays to the administrative building at the retaining wall location and where the lower parking lot is located. The City of Kodiak intends to remove the overburden along Chichenoff Street to road elevation, which reflects the change in elevation at BH-6 and -7, removing 11 and 6 feet, respectively, from subsurface soils encountered. The soil profiles presented consider the nominal depth of the boreholes advanced in each section with a depth range presented for bedrock.

3.4.1 UPPER ELEVATION

The soil profile can be generally described as:

1-foot of ground cover consisting of grass and very loose Peat (PT) overlying 2 feet of loose Organic Silt (OL). This is underlain by 5 feet of dense Silty Clayey Gravelly Sand (g(SC-SM)) on top of 5 feet of dense Silty Clayey Sandy Gravel (s(GC-GM)) over dense Silty Clayey Sand with Gravel ((SC-SM)g) extending to bedrock (Bx) at sporadic depth.

Depth (ft)	Layer	Design (N1)70 (blows/ft)	Assumed Bulk Unit Weight (pcf)	ф'реаk (deg)	Cohesion (psf)
0-1	РТ	—	50	10	—
1-3	OL	5	75	25	_
3 – 9	g(SC-SM)	35	130	32	1000
9 - 14	s(GC-GM)	32	130	34	1000
14 – varies	(SC-SM)g	35	130	32	1000
11.5 – 22	Bx	—	140	40	—

Table 3-5. The Kodiak Fire Station Ideal	ized Soil Profile at Upper Elevations
--	---------------------------------------

3.4.2 LOWER ELEVATION

The soil profile can be generally described as:

0.5-foot of ground cover consisting of grass and very loose Peat (PT) overlying 1-foot of loose Organic Silt (OL) over dense Silty Clayey Sand with Gravel ((SC-SM)g) to dense Silty Clayey Gravelly Sand (g(SC-SM)) extending to bedrock (Bx) at sporadic depth.

Table 3-6. The Kodiak Fire Station Idealized Soil Profile at Lower Elevation
--

Depth (ft)	Layer	Design (N1)70 (blows/ft)	Assumed Bulk Unit Weight (pcf)	ф'рeak (deg)	Cohesion (psf)
0 – 0.5	РТ		50	10	
0.5 – 1.5	OL	5	75	25	—
1.5 – varies	g(SC-SM)/(SC-SM)g	35	130	32	1000
10 - 17	Bx	_	140	40	_

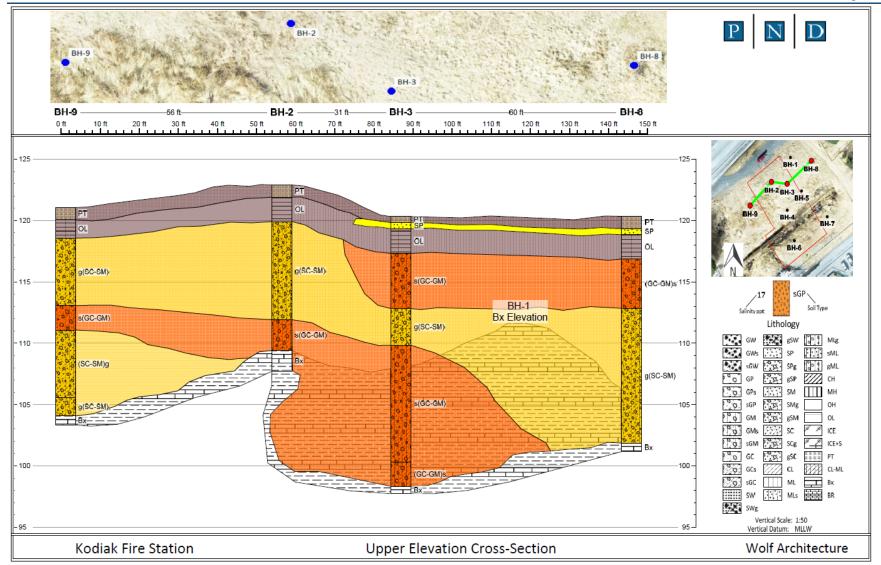


Figure 3-2. Cross-Section of the upper elevation boreholes below the proposed firetruck bay and driveway. BH-3 is in the foreground with BH-1 bedrock elevation shown in the background between BH-3 and BH-8.

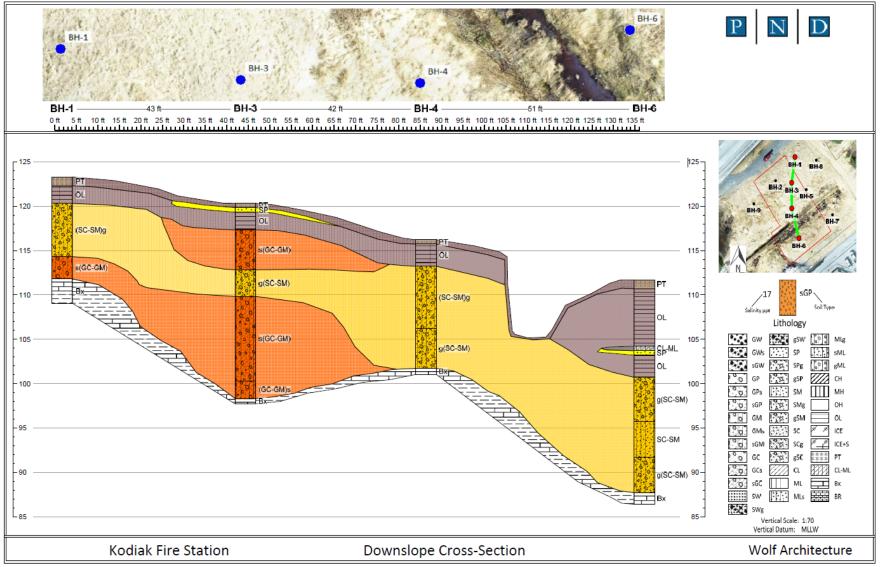


Figure 3-3. Cross-section of the downslope from BH-1 to BH-6 showing the trench where the abandoned retaining wall structure is at the project site.

3.5 GROUNDWATER DEPTH

Groundwater was encountered in three boreholes, BH-6, -8, and -9. In BH-8 and -9, groundwater was identified at 18 and 15 feet bgs, respectively. The groundwater flowed at the interface between soil and bedrock at these two locations. BH-6 was located near the bottom of the slope along a drainage area created by the abandoned retaining wall structure. Groundwater level in BH-6 was a result of this ponded area.

3.6 SEISMIC DESIGN

Seismic design parameters based on maps/data provided by United States Geological Survey (USGS, www.usgs.gov/) are provided in Table 3-7. The design response spectra is shown in Figure 3-4.

Table 3-7. Seismic Design Par	rameters
Return Period	2475 years (2% in 50 years)
Risk Category	IV
Soil Site Class	С
Peak Ground Acceleration (PGA)	0.770
Site Adjusted Peak Ground Acceleration (PGA _M)	0.636
S _s (0.2 sec period acceleration)	1.529
S ₁ (1.0 sec period acceleration)	0.903
Seismic Design Category	F
Moment Magnitude, M _w	8.0

The site class was determined based upon the blow counts and the procedure as outlined in American Society of
Civil Engineer's ASCE 7-10 Minimum Design Loads for Buildings and Other Structures.

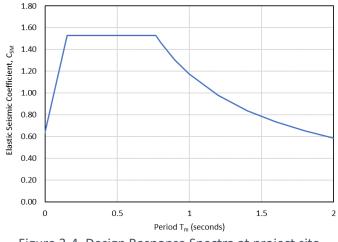


Figure 3-4. Design Response Spectra at project site.

3.6.1 LIQUEFACTION ANALYSIS

Liquefaction is a phenomenon where a saturated or partially saturated soil loses its strength and behaves like a liquid due to ground movement or other sudden changes in stress. Soils that have liquefied have functionally zero strength and can undergo large vertical and lateral displacements. Earthquake-induced liquefaction generally occurs only under particular conditions, including a high groundwater table, strong earthquake ground shaking with long duration, and loose uniform sands. Below the peat and organic silt layers, blow counts corrected to $(N_1)_{70}$, ranged from 21 to 72 indicating a dense to very dense material at the project site. BH-6 had the highest

groundwater table and field blow counts of 0 blows per foot in the upper 12 feet of material. As mentioned, however, the City of Kodiak plans to excavate approximately 10 feet at BH-6 to bring the ground surface to street elevation, which will remove this very loose material. On top of the approximately 10 feet of excavation, there will be an additional 4 feet of excavation to account for strip footing depth and structural fill replacement to fully remove the potentially liquefiable material at the site. All other boreholes at the site do not indicate a potential for liquefaction.

3.7 GLOBAL STABILITY

A global stability analysis was performed based on the existing site geometry and the soil lithology encountered in this investigation. The software program Slide2, by Rocscience, was used to conduct the stability analyses. Two sections were analyzed: (1) a transect from BH-2 to BH-7 where the slope was intact and, (2) the same slope with the proposed Mechanically Stabilized Earth (MSE) wall in place.

Analysis (1) considered three load cases: static (long-term), pseudo-static/seismic (short-term with seismic accelerations), and a Newmark analysis. The seismic loads are applied in terms of horizontal seismic coefficients, typically PGA as a percentage of gravity. A design horizontal seismic coefficient equal to the site-adjusted peak ground acceleration (PGA_M), was applied to the analysis.

Analysis (1) yielded factors of safety in excess of the minimums required. It should be noted that this analysis broadly applied soil conditions at one borehole across a relatively large area. Consideration of this should be given when assessing the analysis accuracy. Results using the seismic design parameters defined in Table 3-7 indicated no slope failure with Factors of Safety against slope failure ranging from a static 6.0 to a pseudo-static/seismic FS = 1.5. Slope failure was confined to the surficial peat and organic silt layer leaving the remaining slope intact. The Newmark analysis suggested deformation confined to the surficial peat and organic silt layer, which will be excavated at the site.

The MSE wall design under Analysis (2) will support the upper west and east driveways and parking areas at Mill Bay Road elevation. Below the MSE wall will be additional parking at Chichenoff Street elevation. The design and analysis follow AASHTO LRFD Bridge Design Specifications, 8th Edition, Section 11.10 Mechanically Stabilized Earth Walls and the FHWA Design and Construction of MSE Walls and Reinforced Soil Slopes. The reinforced soil area is contained by a 15-foot wall face that extends 30 feet north towards Mill Bay Road. The design live load vehicle is an emergency vehicle, type EV3, with a combined load of 0.554 ksf. This is the live load applied to the upper driveway and parking area supported by the MSE wall. Geotechnical texts (Day, 2002) and design codes (AASHTO, 2017; NCHRP, 2008) suggest a design horizontal seismic coefficient equal to one half of the site-adjusted peak ground acceleration (PGA_M), for earthen slopes that are considered non-rigid or yielding (i.e., allowed to move). Implementation of this reduced seismic coefficient assumes that some deformation, on the order of inches, is allowed to occur during the design seismic event which is anticipated to be acceptable for this project. Therefore, a horizontal seismic acceleration of 0.32g was used for the MSE wall seismic analysis.

Analysis (2) yielded factors of safety in excess of the minimums required, which were taken as 1.5 for the static condition and 1.1 for the seismic condition. Similar to Analysis (1), this analysis broadly applied soil conditions at one borehole across a relatively large area. Consideration of this should be given when assessing the analysis accuracy.

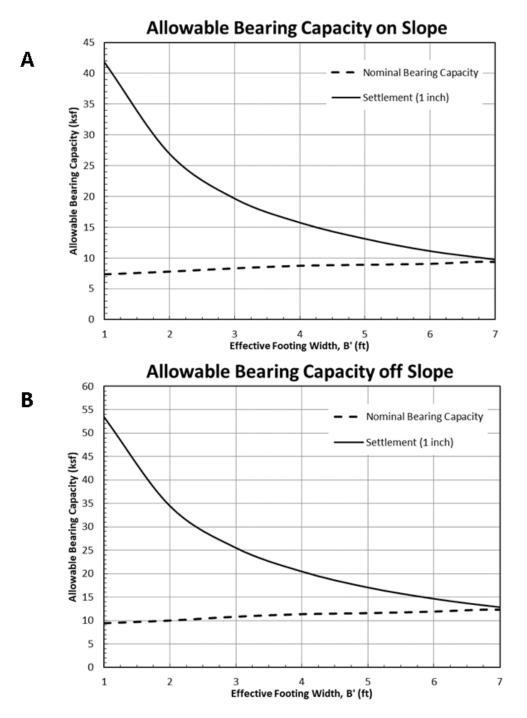
4 GEOTECHNICAL DESIGN RECOMMENDATIONS

4.1 FOUNDATION RECOMMENDATIONS

A shallow foundation is recommended for this project. Design of a shallow foundation must consider the bearing capacity of the underlying soils, as well as the potential for settlement and the effects of seasonal frost action. Fines contents ranged from 27 to 52 percent in sands and gravels at the site. Based on the fines content and low water table elevation, the in-situ material can be considered to have moderate frost susceptibility (Frost group F-3) as per the USACE frost design soil classification. A 36-inch frost depth design is suggested for Kodiak, Alaska. As such, footings must be embedded below frost level to resist frost action on the structure. It is recommended that warm footings be used and placed on at least 18 inches of non-frost susceptible (NFS) soils. In general, foundation designs should be consistent with the current edition of the International Building Code (IBC) with any local amendments or requirements for footing depths. PND recommends excavating a minimum of 4.5 feet of the surficial soils to include all deleterious soil material at the perimeter strip footing location and replacing it with a NFS fill material. The 4.5-foot total excavation shall be from grade to bottom of NFS layer below footing and will vary across the site. The slab-on-grade and interior spread footings shall bear on 18 inches of NFS material over supporting dense insitu material. Excavation depth below pavement surface is provided in Section 4.3.

Additionally, the project site is located on a 14% slope and does not require special instruction on foundation setback from descending slope surface. However, the firetruck bay structure will be constructed on the slope and a separate bearing capacity calculation was completed (Figure 4-1, Panel A). Figure 4-1, Panel B provides the bearing capacity for the administration building below the slope, level with Chichenoff Street.

Perimeter strip footings and interior spread footings should bear on a minimum of 18 inches of classified, compacted structural fill prepared in accordance with our recommendations. If footing preparations follow our recommendations, they may be designed according to the following criteria:


4.1.1 MAXIMUM ALLOWABLE BEARING PRESSURE

0	Static Loads (Dead and Norn	nal Live):	See Figure 4-1	

o Transient Loads (Wind and Seismic): Increase Static Loads by 33%

The effective bearing area of eccentrically loaded footings will be less than the actual footing dimensions, and may vary depending on anticipated design loads and eccentricity. The allowable bearing capacity can be estimated from Figure 4-1 for different footing widths. Expected settlements will depend on footing dimensions and loads applied to the structure. The bearing capacity analysis should be updated after structural loads, footing types and dimensions have been determined by the structural engineer.

4.1.2 DEPTH OF EMBEDMENT

- o Perimeter Strip Footing: 36 inches, min.
- o Isolated, Interior Spread Footing:

12 inches

Perimeter footings are assumed to be warm footings. Depth is measured from the adjacent grade to the bottom of the footing.

4.1.3 SETTLEMENT (NON-LIQUEFACTION)

0	Total Settlement:	1 inch
0	Differential Settlement:	0.75 inch

Settlement from normally occurring static, live, and transient loads.

4.1.4 SETTLEMENT (LIQUEFACTION)

o Differential Settlement: 1 inch over 98 feet (longest wall in building design)

These recommended bearing capacities assume that the footings bear on structural fill material and not any organic or peat material.

4.1.5 LATERAL LOAD RESISTANCE

Lateral loads on footings will be resisted by passive earth pressures developed against the footing block and frictional resistance against the base of the footing. PND recommends a passive resistance (equivalent fluid pressure) of 200 pcf that includes a factor of safety of 2. A coefficient of friction of 0.45 is recommended to be used for resistance of footings to lateral sliding, assuming concrete footings cast directly against sand and gravel.

4.2 SOIL PARAMETERS FOR MSE WALL

Soil parameters for use in design of a retaining wall are provided in Table 4-1.

Table 4-1.	. Recommended	Soil Parameters	for MSE W	all Design

Parameter	Design Value
Moist Unit Weight of Reinforced Soil Mass , (lbs/ft ³)	130
Angle of Internal Friction in Reinforced Soil Mass (°)	34
Moist Unit Weight of Soil behind Reinforced Mass , (lbs/ft ³)	125
Angle of Internal Friction of Soil behind Reinforced Mass (°)	32
Angle of Internal Friction of Soil below Reinforced Mass (°)	34
Wall-Backfill Interface Friction Angle, δ (°)	21.3
Reinforced Soil Mass (Tencate Miragrid 10XT), Ka-retained	0.307

4.3 PAVEMENT DESIGN

Frost classification testing of on-site soils indicated moderate frost susceptibility (F-4). Assuming that traffic traversing the driveway and parking areas will be primarily lightly loaded passenger vehicles and heavier service vehicles or snow removal equipment, PND recommends a minimum 3 inches of asphalt pavement, 4 inches of D-1 base, and 16 inches of non-frost susceptible Type IIA subbase. Subbase will overlay NFS gravel fill of varying depth. At lower elevation, where Silty Clayey Gravelly Sand is between 1.5 and 2 feet bgs, PND recommends a total pavement structure of 3 inches of asphalt pavement, 4 inches of D-1 base, and 16 inches of NFS Type IIA subbase overlaying NFS gravel fill ranging in depth to dense Silty Clayey Gravelly Sand layer or directly overlaying dense Silty Clayey Gravelly Sand layer.

5 CONSTRUCTION RECOMMENDATIONS

5.1 SITE RECOMMENDATIONS

All earthworks should be performed according to the project specifications and in accordance with local, state, and federal laws and regulations.

5.2 SITE PREPARATION

All trees, small brush, fencing, existing concrete barriers and rebar should be removed prior to starting any earthwork. Any observed organic material at the surface should be removed and wasted off site or used as landscaping. The remaining subgrade soils should be proof rolled and compacted prior to further site construction work. Care should be exercised that organic matter is not contained in any subgrade that footings or pavements bear on.

5.3 EXCAVATIONS

Temporary excavations into soil should be performed with care and follow OSHA or other agency guidelines and recommendations for trenching and slope angles based on soil type encountered in the geotechnical investigations and as observed during construction. Permanent excavations into soil should either be retained or sloped to meet long term stability requirements.

Any peaty, debris, or frozen soil must be removed from subgrades beneath the footings and slabs and replaced with material as recommended in this report and following all project specifications.

Excavations should be performed utilizing a backhoe with a smooth-bladed bucket from outside the excavation to minimize disturbance of the subgrade soils. Soils that are disturbed, pumped, or rutted by construction activity should be reworked and re-compacted prior to placement of structural member.

5.4 DRAINAGE AND CONTROL OF WATER

Excavations may encounter seepage due to recent rain events at the site. The gradual slope only had groundwater at the bedrock-soil interface encountered in two boreholes (BH-8, and -9). Fines content in the soil is CL-ML, which is considerably dense when dry, but very difficult to work with when wet. The weather should be monitored during excavation and construction when in-situ silty clayey material is exposed. It is the contractor's responsibility to determine the appropriate dewatering technique(s) for the construction method chosen and for the soil and water conditions encountered in the geotechnical explorations and during construction.

Site grading should be established to provide drainage of surface water or roof drainage away from the proposed building and toward suitable drainage structures. Ground adjacent to the building's foundation should be graded to slope away from the building. Parking areas should have positive gradients toward drainage structures and away from buildings.

Permeability testing was not completed on the in-situ soils, but a typical coefficient of permeability for the existing in-situ soils is 0.028 ft/day.

5.5 FILL AND COMPACTION

Structural fill material should have a maximum particle size of 6 inches and less than 6% passing the No. 200 sieve size. Structural fill shall be placed in lifts not exceeding 12 inches in loose thickness. Compaction of structural fill shall be achieved by performing a minimum level of effort consisting of six complete passes with a 15-ton vibratory steel drum roller. In areas of any structural fill that are too small to accommodate a roller, compaction shall be

accomplished by a minimum level of effort of six complete passes with a vibratory plate compactor with a minimum rated centrifugal force of 15,000 lbs.

A vibratory steel drum roller should be utilized to compact the subgrade for slabs and walkways. For footings, at a minimum a plate compactor should be used to compact the subgrade. However, lightweight or hand operated compactors should be used when compacting near existing structures, utilities and/or new footings to avoid distressing and/or causing settlement below the structure.

Soils containing a higher fines content are moisture sensitive which can lead to difficulty with compaction if the soils are too wet therefore control of water is critical. Care must be taken to prevent native soils, which will be exposed during construction, from becoming too wet. It is the responsibility of the contractor to ensure proper moisture content control of the silty clayey sands and perform drying processes like disking or tilling of the subgrade as needed to ensure proper subgrade preparation. Any loose, disturbed, soft, or saturated soils should be re-work and re-compacted prior to placing footings or slabs. Any loosing of fill material by hauling or other equipment should be re-compacted as needed.

No hauling or grading equipment should be used in lieu of appropriate compaction equipment. The number of passes required to meet the compaction requirement will depend upon the size of compaction equipment used. Each layer should be compacted as recommended in this report and field verification of compaction requirements is recommended.

Foundation soil should be protected from freezing during construction. No frozen soil should be used as fill, nor should any fill be placed over frozen soil. Any frozen soil should be removed and replaced with appropriate fill prior to construction of any footings or slabs.

5.5.1 FOOTINGS AND SLABS

Fill placed within 12 inches of the bottom of footings or slabs should have a maximum particle size of 6 inches. Fill should be placed in loose lifts not exceeding 12 inches in thickness if a large vibratory compactor is used, or not exceed 4 inches in thickness if a hand compactor is used. Each lift of fill shall be compacted to at least 95 percent of the Modified Proctor Maximum Density (ASTM D1557). We recommend the optimum moisture content of the compacted subgrade not vary more than ± 2 percent.

5.5.2 UTILITIES AND OPEN AREAS

Fill placed as bedding material, in trenches, and in open areas should have a maximum particle size of 3 inches. Fill should be placed in loose lifts not exceeding 12 inches in thickness if a large vibratory compacted is used, or not exceed 4 inches in thickness if a hand compactor is used. Each lift of fill shall be compacted to at least 90 percent of the Modified Proctor Maximum Density (ASTM D1557). We recommend the optimum moisture content of the compacted subgrade not vary more than <u>+</u>2 percent.

6 LIMITATIONS

The information submitted in this report is based on our interpretation of data from a field and lab geotechnical investigation conducted for this project and other sources discussed in this report. Effort was made to obtain information which is representative of the actual conditions at the site. However, actual subsurface conditions will vary and additional information may be discovered that could impact our recommendations. If conditions significantly different from those indicated in this report are encountered by subsequent investigations or during construction, the recommendations of this report should be reviewed by PND.

This report was prepared by PND Engineers, Inc. for use on this project only. PND is not responsible for conclusions, opinions or recommendations made by others based on data presented in this report. This report is submitted to Wolf Architecture.

We appreciate the opportunity to work with Wolf Architecture on this project.

Sincerely,

PND Engineers, Inc. | Anchorage

Torsten Mayrberger, PhD, PE Principal

Kannon Lee, EIT Staff Geotechnical Engineer

APPENDIX A — BOREHOLE LOGS

SOILS CLASSIFICATION, CONSISTENCY AND SYMBOLS

CLASSIFICATION

Identification and classification of soil samples is accomplished in general accordance with the ASTM version of the Unified Soil Classification System (USCS) as presented in ASTM Standard D2487. The standard is a qualitative method of classifying soil into the following major divisions (1) coarse grained soil, (2) fine grained soil, and (3) highly organic soils. Classification is performed on a soil sample which passes the 75 mm (3 inch) sieve, oversize material (> 75 mm particles) is noted on the soil logs as well. Classification of oversize material is not always possible because the oversize particles are typically too large to be captured in the sampling equipment. Oversize materials greater than 300 mm (12 inches) are termed boulders, while materials between 75 mm and 300 mm are termed cobbles. Coarse grained soils are described as having 50% or more of the sample retained on the No. 200 sieve (0.075 mm) while fine grained soils will have 50% or more of the sample passing the No. 200 sieve. Coarse samples containing >50% material retained on the No. 4 sieve is classified as gravel. If a majority of the sample is retained on the No. 200 sieve; these may be classified as a sand. Fine grained soils are those having more than 50% of the sample passing the No. 200 sieve; these may be classified as silt or clay depending their Atterberg limits or observations of field consistency. Refer to the most recent version of ASTM D2487 for a complete discussion of the classification method.

SOIL CONSISTENCY - CRITERIA

Soil consistency as defined below and determined by normal field and laboratory methods applies only to non-frozen material. For these materials, the influence of such factors as soil structure, i.e., Fissure systems, shinkage cracks, slickensides, etc., must be taken into consideration in making any correlation with the consistency values listed below. In permafrost zones, the consistency and strength of frozen soils may vary significantly and unexplainably with ice content, thermal regime and soil type.

STANDARD PENETRATION TEST (BLOWS/FT) RELATIVE TO DENSTIY/CONSISTENCY

Date:

June 2022

UNDRAINED SHEAR STRENGTH

N ₆₀	Density	Relative Density	N ₆₀	Consistency	psf
0-4	Very Loose	0-15%	< 2	Very Soft	< 250
4-10	Loose	15-35%	2 - 4	Soft	250 - 500
10-30	Medium Dense	35-65%	4 - 8	Medium Stiff	500 - 1000
30-50	Dense	65-85%	8 - 15	Stiff	1000 - 2000
> 50	Very Dense	>85%	15 - 30	Very Stiff	2000 - 4000
			> 30	Hard	> 4000

(*correlations based upon standard 1.4" O.D. split spoon and 140 lb manual hammer dropped from a height of 30 inches)

(*Adjust as required for other sampler types)

Ref: Terzaghi and Peck, Soil Mechanics in Engineering Practice, 3rd Edition, pg 60-63 ASTM D1586 Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils ASTM D2487 Standard Practice for Classification of Soils for Engineering Purposes (USCS)

LIST OF ABBREVIATIONS

Drill Ma AR CC60 CD CCm CME CWR DH HSA MR NQ3 MC7 WR TP DP SC SCC SSA	Air Rotary Continuous Coring (RS-60) Case and Drill Continuous Coring (Macro C Continuous Augering Casing with Wash Rotary Down-hole hammer Hollow Stem Auger Mud Rotary NQ3 Triple Tube MC7 Coring Wash Rotary Test Pit Direct Push Sonic Core Sonic Core with Wash Rotar Solid Stem Auger	AF Cc GF Ss ST Cs SC	Continu Grab Sa Oversiz Standar Shelby Core Sa	ary ous Core ample e Split-Spoon d Split-Spoon Tube ample	Colo BK BN DG GG LB LG OG P R OG F RO TN 9 BG	r: Black Brown Dark Brown Dark Gray Graenish Gray Light Brown Light Gray Olive Gray Pink Reddish Rusty Orange Tan Yellowish Orange Brownish Gray	A R SA SR	e Angularity Angular Rounded Sub-Angular Sub-Rounded e Shape: Elongated Flat
F	NGINEERS, INC.	Designed: Drawn: Checked: Project No.:	PND PND PND XXXXXX	GEC		STANDAF CHNICAL EX DREHOLE LE	(PLOI	

Depth (30 ft)	Drill Method	Sample Type	Kecovery	Sample #	Soil Classification		Symbol	Graphic Log	Blows/ 6 in.		Blows per foot Salinity ppt Moisture % 20 30 40	Other Tests	Size Distribution
0	HSA	4 Sh		\	Brown organic SILT; O 1-inch). Gray poorly graded GF Sub-rounded gravel (n	L. Rounded gravel (max. // RAVELLY SAND; gSP. 5 nax. 2-inch).	OL		11 17	•			
5	2] Sh		2					12 8 5 11 14	•	9	10	
	A HSA W	Sh		3			6 gSP		27 25 21	•		•	11 Gravel = 50% Sand = 41% Fines = 9%
10-	HSA	Sh		4					11 13 18	•			
[1	Dep	th			Depth (in feet) below the mudl	ine.						
	2	Wat	er T	abl	<u>e</u>	Water Table depth.							
	3	Drill	Me	tho	<u>d</u>	Drilling methods recorded in depth intervals. Symbols explained on Fig. B-01.							
[4 Sample Type					Type of soil sample collected at depth interval depicted; symbols explained on Fig. B-04.							
	5	Mate	eria	De	escription - General	General description of soil end	ountered ir	n a lithologica	al laye	er.			
6 <u>Symbol</u> Group symbols for soil and ice classification for each specimen.													
	Graphic Log Graphic depiction of lithological layers encountered. Graphic symbols explained in Fig. B-03							in Fig. B-03 and	d B-04.				
	8	Blov	/s/ (3 in		Number of blows to advance s	ampler eac	ch 6-inch inte	erval u	sing	sampler type sp	pecified with a 3	0-inch drop.
	9	Gra	ohs			Graphic log depicting moisture	content ar	nd blow coun	t per	foot c	of soil specimen	s.	
1	0	Othe	er T	est	<u>8</u>	Results of other tests including	j hydromete	er, Atterberg	limits	, etc.			
1	1	<u>Size</u>	Dis	strib	pution	Results of particle size distribut	ition analys	is.					

GENERAL NOTES

- 1. Field descriptions may have been modified to reflect laboratory test results.
- 2. Descriptions on these boring logs apply only at the specific locations at the time the borings were drilled. They are not warranted to be representative of subsurface conditions at other locations or times.
- Split spoon blow counts shown are uncorrected raw data. Various hammer sizes and split spoon sizes were
 used and have not been corrected to a Standard Penetration Test (SPT). Blow counts may vary substantially
 between SPT and these methods.

Designed: PND Drawn: PND Checked: PND Project No.: Date: June 2020

STANDARD GEOTECHNICAL EXPLORATION BOREHOLE LEGEND

SOIL LEGEND - (1 of 3)

GWs WELL GRADED GRAVEL WITH SAND

SGW WELL GRADED SANDY GRAVEL

POORLY GRADED GRAVEL WITH SAND

POORLY GRADED SANDY GRAVEL

(GW-GM)s WELL GRADED GRAVEL WITH SILT AND SAND

s(GW-GC) WELL GRADED SANDY GRAVEL WITH CLAY

 Image: state state

 ac
 bc
 <td

POORLY GRADED GRAVEL WITH CLAY

GP-GC)s POORLY GRADED GRAVEL WITH CLAY AND SAND ちんりょ

GMs SILTY GRAVEL WITH SAND

sGM SILTY, SANDY GRAVEL

GC CLAYEY GRAVEL

CLAYEY GRAVEL WITH SAND

CLAYEY, SANDY

GC-GM GC-GM SILTY, CLAYEY GRAVEL

GC-GM)s SILTY, CLAYEY SIC B GRAVEL WITH SAND

SILTY, CLAYEY, SANDY GRAVEL

WELL GRADED SAND

SWg WELL GRADED SAND WITH GRAVEL

SP POORLY GRADED SAND

PND Designed: Drawn: PND Checked: PND Project No.: Date: June 2020

STANDARD GEOTECHNICAL EXPLORATION BOREHOLE LEGEND

SOIL LEGEND - (2 of 3)

SPg POORLY GRADED SAND WITH GRAVEL

gSP

SW-SM WELL GRADED SAND

POORLY GRADED

GRAVELLY SAND

(SW-SM)g WELL GRADED SAND WITH SILT AND GRAVEL

WITH SILT

g(SW-SM) WELL GRADED GRAVELLY SAND WITH SILT

SW-SC WELL GRADED SAND WITH CLAY

(SW-SC)g WELL GRADED SAND WITH CLAY AND GRAVEL

g(SW-SC) WELL GRADED GRAVELLY SAN GRAVELLY SAND WITH CLAY

SP-SM POORLY GRADED SAND WITH SILT

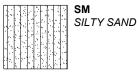
(SP-SM)g POORLY GRADED SAND WITH SILT AND GRAVEL

(SP-SC)g POORLY GRADED SAND WITH CLAY AND GRAVEL

g(SP-SM)

SP-SC

POORLÝ GRADED


POORLY GRADED

SAND WITH CLAY

GRAVELLY SAND WITH SILT

g(SP-SC) POORLY GRADED GRAVELLY SAND WITH CLAY

SMg SILTY SAND WITH GRAVEL

gSM SILTY, GRAVELLY SAND

SCg CLAYEY SAND WITH GRAVEL

gSC CLAYEY, GRAVELLY SAND

SC-SM SILTY, CLAYEY SAND

(SC-SM)g SILTY, CLAYEY SAND WITH GRAVEL

g(SP-SC) POORLY GRADED GRAVELLY SAND 2 WITH CLAY

CLAY WITH SAND

CLg CLAY WITH GRAVEL

sCL SANDY LEAN CLAY

gCL GRAVELLY LEAN CLAY

sCLg SANDY LEAN CLAY WITH GRAVEL

gCLs GRAVELLY LEAN CLAY WITH SAND

PND Designed: Drawn: PND PND Checked: Project No.: Date: June 2020

STANDARD **GEOTECHNICAL EXPLORATION** BOREHOLE LEGEND

SOIL LEGEND - (3 of 3)

MLs SILT WITH SAND

MLg LEAN SILT WITH GRAVEL

sML SANDY SILT

GRAVELLY SILT

sMLg SANDY SILT WITH GRAVEL

gMLs **GRAVELLY SILT** WITH SAND

CHg FAT CLAY WITH GRAVEL

FAT CLAY WITH SAND

gCH **GRAVELLY FAT CLAY**

gCHs **GRAVELLY FAT CLAY** WITH SAND

ELASTIC SILT

MHs ELASTIC SILT WITH SAND

ΜН

MHg ELASTIC SILT WITH GRAVEL

sMH SANDY ELASTIC SILT

gMH **GRAVELLY ELASTIC** SILT

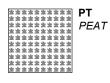
sMHg SANDY ELASTIC SILT WITH GRAVEL

gMHs GRAVELLY ELASTIC SILT WITH SAND

CHs

PND Designed: Drawn: PND PND Checked: Project No.: Date: June 2020

STANDARD GEOTECHNICAL EXPLORATION BOREHOLE LEGEND



ORGANIC SILT

ICE+S × ICE WITH SOIL \checkmark 11

arrow Symbol Log Brite To 20 10 20 10 20 10 <th10< th=""> <th10< th=""> 10</th10<></th10<>	0 Image: Construction of the second seco	Image: Show of the second s					re Station 221042	Elevation: 123.3 ft MLLW Horizontal Datum: NAD8 Latitude: 57.79714 °N	3 AKSP Zone	2 5 : 152.3897(o °₩		Logged Review Review	/2022
1 1 Loose, brown organic SILT; OL. With GRASS and ROOTS. 0L 1 0 0L 0L 1 1 0 0L 0L 1 1 1 0 0L 0L 1 1 1 1 0 0L 0L 1 1 1 1 1 0 0L 0L 1 <th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th> <th>Image: Second second</th> <th>_</th> <th>Sample Type</th> <th>Recovery</th> <th>Sample #</th> <th></th> <th></th> <th></th> <th></th> <th>Blows/ 6 in.</th> <th>▲ Salinity p ● Moisture</th> <th>pt %</th> <th>Size Distributio</th>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Image: Second	_	Sample Type	Recovery	Sample #					Blows/ 6 in.	▲ Salinity p ● Moisture	pt %	Size Distributio
Image: state of the state o	Fines = 3 $\frac{4}{5}$ $\frac{4}{5}$ $\frac{5}{5}$ $\frac{1}{10}$ $\frac{1}{12}$ $\frac{1}{10}$ $\frac{1}$	Image: Ship of the second s	HSA					SILT; OL. With GRASS and		2222222				
Gravel; s(GC-GM) Sh 2 Sh 2 Sh 3 Dense, brownish gray SILTY, CLAYEY, SANDY GRAVEL; s(GC-GM). Sub-angular gravel (max. 1-inch). With SHALE Fragments. S(GC-GM) SHALE; Bx. SHALE; Bx	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sh 2 Sh 2 Sh 2 Sh 3 Sh 4 Sh 5 Sh <td< td=""><td>HSA</td><td>Sh</td><td></td><td>1</td><td>GRAVEL; (SC-SM)g. Su</td><td>b-rounded/sub-angular gravel</td><td></td><td></td><td>7 10 12</td><td></td><td></td><td>Fines = 33.5%</td></td<>	HSA	Sh		1	GRAVEL; (SC-SM)g. Su	b-rounded/sub-angular gravel			7 10 12			Fines = 33.5%
Sh 3 Dense, brownish gray SILTY, CLAYEY, SANDY GRAVEL; s(GC-GM). Sub-angular gravel (max. 1-inch). With SHALE Fragments. S(GC-GM) S	$Sh = \frac{Sh}{2} + Sh$	Sh 3 Dense, brownish gray SILTY, CLAYEY, SANDY GRAVEL; s(GC-GM). Sub-angular gravel (max. 1-inch). With SHALE Fragments. Sh 4 Sh 5 Sh 4 Sh 5 Sh 5	HSA			2			(SC-SM)g		10 12 13			
SHALE; Bx. 9,0,0 14 15 1	SHALE; Bx. 9,0,0 14 15 1	SHALE; Bx. Bx 9,9,9,14 15 1	HSA HSA	Sh			GRAVEL; s(GC-GM). Su	ıb-angular gravel (max.	s(GC-GM)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 15 17 6			Gravel = 19% Sand = 36% Fines = 45%
		50/3" i i i i	HSA HSA				SHALE; Bx.		Bx		15			

						LOG OF BC	DREHO	LE BH	1-2				
					re Station 221042	Elevation: 122.9 ft MLLW Horizontal Datum: NAD8 Latitude: 57.79704 °N	3 AKSP Zone	2 5 : 152.3899	0 °W	Re	gged By: H eviewed By: eview Date:	KL CK 6/27/	/2022
Depth (15.2 ft)	Drill Method	Sample Type	Recovery	Sample #			Symbol	Graphic Log	Blows/ 6 in.	 Blows per for Salinity ppt Moisture % 10 20 30 4 	Oth	ler	Size Distribution
0					Very loose PEAT ; PT .		PT	×××××××× ******** ******** **********			1		
1- 2-	HSA				Loose, dark brown org	anic SILT; OL .	OL						
3-	HSA	Sh	-	1	Dense, gray SILTY, CLA g(SC-SM). Sub-rounded 2-inch). With SHALE Fr beginning at 5'.	d/sub-angular gravel (max.			10 13 11 10	•			Fines = 39.8%
5-	A HSA								5 8 11				
7-	HSA	Sh		2			g(SC-SM)		11				
8-	HSA								7 11		 		
9- 10-	HSA	Sh		3		, CLAYEY, GRAVELLY SAND ; d/sub-angular gravel (max. agments.			14 16				
11-	HSA	Sh		4	Dense, brownish gray S GRAVEL; s(GC-GM). Su	ıb-angular gravel (max.			7 17 14 20				
12- 13-	-		888		1-inch). With SHALE Fr	agments.	s(GC-GM)	0,0000					
14-	HSA				Dark gray SHALE; Bx .		Bx		50/2"				
15-		sh		5		orehole terminated at 15.2 ft	L	Drilling Co	ontract				
		P		1		lient: Wolf Architecture rill Start: 6/1/2022		Drill Equip Driller: B		Geoprobe 671	2DT		Page: 1 of 1

						LOG OF BC	REHO	LE BH	1-3				
					e Station 221042	Elevation: 120.3 ft MLLW Horizontal Datum: NAD83 Latitude: 57.79702 °N	3 AKSP Zone	e 5 : 152.38974	4 °W		Revie	d By: KL wed By: CK w Date: 6/22	7/2022
Depth (22.6 ft)	Drill Method	Sample Type					Symbol	Graphic Log	Blows/ 6 in.	 ◆ Blow ▲ Salin ● Mois 10 20 	ture %	Other Tests	Size Distribution
0 1- 2-	HSA	Sh		1	ROOTS.	th GRASS AND ROOTS. ly graded SAND; SP . With nic SILT; OL . With ORGANICS.	PT SP OL	****** ********	0 0 1 0				
3	HSA HSA	Sh		2	Dense, brownish gray Si GRAVEL ; s(GC-GM) . Sub 2-inch). With SHALE Fra	-angular gravel (max.		000000000000000000000000000000000000000	1 5 13 10				Gravel = 37% Sand = 37% Fines = 27%
5- 6- - 7-	HSA	Sh		3			s(GC-GM)		4 11 30 21				
8- 9- - 10-	HSA HSA	Sh		4		LTY, CLAYEY, GRAVELLY Igular gravel (max. 2-inch).	g(SC-SM)		5 11 12 17	•			
11- 12-	HSA	Sh		5		CLAYEY, SANDY GRAVEL ; gravel (max. 1.5-inch). With			7 12 20 25				
13 - - 14 - - 15 -	HSA HSA						s(GC-GM)						
- 16- - 17- - 18-	HSA HSA	Sh		6					7 14 15				
- 19- - 20	HSA	P		1	N Clie	rehole terminated at 22.6 ft ent: Wolf Architecture Il Start: 6/1/2022		00000000000000000000000000000000000000	ment		covery Drilli		Page: 1 of 2

						LOG OF BC	OREHO	LE Bł	1-3						
					e Station 221042	Elevation: 120.3 ft MLLW Horizontal Datum: NAD8 Latitude: 57.79702 °N	Iorizontal Datum: NAD83 AKSP Zone 5					Logged By: KL Reviewed By: CK Review Date: 6/27/2022			
Depth (22.6 ft)	(22.6 Type						Symbol	Graphic Log	Blows/ 6 in.	 ◆ Blows per f ▲ Salinity ppt ● Moisture % 10 20 30 	t	Other Tests	Size Distribution		
20 21- - 22-	HSA	Sh		7	Very dense, dark gray SI SAND; (GC-GM)s. Sub-a With SHALE Fragments a	(GC-GM)s	000000000000000000000000000000000000000	9 16 16							
	_				SHALE; Bx.		Bx	\searrow	50/1"		l I				

						LOG OF BC	REHO	LE Bł	1-4				
					re Station 221042	Elevation: 116.2 ft MLLW Horizontal Datum: NAD8 Latitude: 57.79691 °N	3 AKSP Zone	2 5 : 152.38974	4 °W		Logged By: Reviewed By Review Date:	CK	/2022
Depth (15.2 ft)	Drill Method	Sample Type	Recovery	Sample #	Soil Classification		Symbol	Graphic Log	Blows/ 6 in.	 Blows per Salinity p Moisture 10 20 30 	r foot pt % Of	ther ests	Size Distribution
0					Very loose PEAT ; PT .		PT	********					
1- 2-	HSA	Ch			Loose, brown organic S	lt; ol.	OL						
3-	HSA	Sh		1		ILTY, CLAYEY SAND with			1 5				
4 -		Sh		2	GRAVEL; (SC-SM)g. Sub 1.5-inch). With Fracture				12 13				
5-	HSA								5				
6-	HSA	Sh		3			(SC-SM)g		8 8 10			= 24 = 19	
8-	HSA		2000										
9-	-	Sh		4					4 9 12	•			Gravel = 19% Sand = 37% Fines = 44%
10-	HSA		0000										111125 - 4470
10-	HSA	Sh		5	Dense, brownish gray S SAND; g(SC-SM). With F	ILTY, CLAYEY, GRAVELLY Fractured SHALE.			5 12 13 15				
13-	HSA						g(SC-SM)						
14-	A												
15-	HSH	Sh	8888	6	SHALE; Bx.		Bx	XX	50/2"				
		P		1	N Cli	rehole terminated at 15.2 ft ent: Wolf Architecture ill Start: 6/1/2022		Drilling Co Drill Equip Driller: B	ment		ery Drilling 6712DT		Page: 1 of 1

						LOG OF BC	DREHO	LE BH	ł-5					
					e Station 221042	Elevation: 117.3 ft MLLW Horizontal Datum: NAD8 Latitude: 57.79699 °N	3 AKSP Zone	e 5 e: 152.38960)°W			Logged Review Review	ed By: CK	/2022
Depth (18.7 ft)	Drill Method	Sample Type	Recovery	Sample #	Soil Classification		▲ \$\		-		Other Tests	Size Distribution		
0					Very loose PEAT ; PT .		PT	*******						
1-						poorly graded SAND; SP.	SP		0 0					
1 .	HSA	Sh		1	and ORGANICS.	nic SILT; OL . With ROOTS	OL		1 1			153% <mark>O</mark>		
2-	-				Dense, light brown SILT With COBBLES.	Y, CLAYEY SAND; SC-SM.	SC-SM							
3-	HSA							H H H	2 7	1		1		
4-	HSA	Sh		2	Dense, gray SILTY, CLAY g(SC-SM). (max. 1.5-incl and COBBLES.	EY, GRAVELLY SAND ; n). With SHALE Fragments			13 16					
5- 6-	HSA						g(SC-SM)		6 10 10					
7-	-	Sh		3					12					
8-	HSA					LTY, CLAYEY SAND with			7 10					
9-	HSA	Sh		4	GRAVEL; (SC-SM)g . Ang With COBBLES.	ular gravel (max. 1-inch).			12 13					
10-	HSA H				Dense, dark gray SILTY, GRAVEL; (SC-SM)g. Sub- 2-inch). With COBBLES.	angular gravel (max.	_		5 12 15					
12-	Ĥ	Sh		5			(SC-SM)g		17					
13-	HSA						(3C-3WI)g							
14 - 15 -	HSA													
16-	HSA								10 16 26					
17-		Sh		6					37					
17-	HSA				SHALE; Bx.		Вх	$\left \right\rangle$						
	1	Sh	1	7					50/2"			1		
-	_		,		Bo	rehole terminated at 18.7 ft		Drilling Co	ntract	or:	Discove	ery Drillin	3	
		P		1	V Clie	ent: Wolf Architecture Il Start: 6/2/2022		Drill Equip Driller: B	ment		eoprobe			Page: 1 of 1

						LOG OF BO	REHO	LE BH	1 -6				
					e Station 221042	Elevation: 111.7 ft MLLW Horizontal Datum: NAD83 Latitude: 57.79678 °N	B AKSP Zone Longitude	e 5 : 152.38968	8°W		Logged Reviewe Review	By: KL ed By: CK Date: 6/27	/2022
Depth (25.3 ft)	Drill Method	Sample Type	Recovery	Sample #	Soil Classification		Symbol	Graphic Log	Blows/ 6 in.	 Blows pe Salinity p Moisture 10 20 30 	opt e %	Other Tests	Size Distribution
0					Very loose PEAT ; PT .		РТ	**************************************					
1-	HSA					nic SILT ; OL . Sub-angular With GRASS and ROOTS.		******					
2-													
3-	HSA												
4-							OL						
5-	HSA												
6-	A								0 0 0				
7-	HSA	Sh		1					2				
8-	HSA	Sh		2	Very loose, brown lean COBBLES.	SILTY CLAY; CL-ML. With	CL-ML		2				
						poorly graded SAND; SP.	SP		3 0 0				
9-	bA				Very loose, brown organ	nic SILT; OL.			0				
10-	¥						OL		0				
11-	HSA					ILTY, CLAYEY, GRAVELLY			0 0				
12-		Sh		3	SAND; g(SC-SM). Sub-ar	ngular gravel (max. 1/2-inch).			6				
13-	HSA												
14-							g(SC-SM)						
15-	HSA												
									0 8				
16-	HSA	Sh		4		CLAYEY SAND; SC-SM. x. 1-inch). With Fractured			8 10				Gravel = 12% Sand = 42%
17-					SHALE.								Fines = 46%
18-	HSA						SC-SM						
19- 20	HSA												
		P		1	N D Clie	rehole terminated at 25.3 ft ent: Wolf Architecture ill Start: 6/2/2022	L	Drilling Co Drill Equip Driller: B	ment		ery Drilling 6712DT	5	Page: 1 of 2

						LOG OF BC	REHO	LE BH	1-6				
					e Station 221042	Horizontal Datum: NAD83 AKSP Zone 5					Logged By: KL Reviewed By: CK Review Date: 6/27/2022		
Depth (25.3 ft)	Drill Method	Sample Type	Recovery	Sample #	Soil Classification		Symbol	Graphic Log	Blows/ 6 in.	 Blows pe Salinity p Moisture 20 30 	pt %	Other Tests	Size Distribution
20 21- 22-	HSA	Sh		5		CLAYEY, GRAVELLY SAND; ravel (max. 1-inch). With	g(SC-SM)		6 12 18				Fines = 51.9%
23-	HSA												
24 - - 25 -	HSA	Sh		6	SHALE; Bx.		Bx	$\langle \rangle \rangle$	60/4"				

						LOG OF BC	REHO	LE BH	I-7				
					e Station 221042	Elevation: 107.4 ft MLLW Horizontal Datum: NAD8 Latitude: 57.79688 °N	3 AKSP Zone	e 5 e: 152.38934	4 °W	Rev	ged By: I viewed By: view Date:	KL CK 6/27/	/2022
Depth (16.2 ft)	Drill Method	Sample Type	Recovery	Sample #	Soil Classification		Symbol	Graphic Log	Blows/ 6 in.	 Blows per foot Salinity ppt Moisture % 20 30 40 	t Otł	ier	Size Distribution
0 1- 2- 3-	HSA				Very loose PEAT ; PT . Very loose, brown org	anic SILT; OL.	PT OL	*******					
4- 5-	HSA				Very loose, light brown	n poorly graded SAND; SP. SILT; OL.	SP		0				
6- 7-	HSA HSA	Sh		1		7, CLAYEY, GRAVELLY SAND ; gravel (max. 2-inch). With	g(SC-SM)		034				
9-	HSA H	Sh		2	Dense, dark gray SILTY	CLAYEY SAND with	5(3C 3W)		4 9 10 9				
11 - 12 -	HS/	Sh		3	GRAVEL ; (SC-SM)g . Su 1-inch). With Fracture	b-angular gravel (max.	(SC-SM)g		6 8 10 11		LL = PL =		
13- 14-	-						(SC-SIWI)g						
15- 16-	-	Sh		4	Dense, dark gray SILTY g(SC-SM). With Fractu SHALE; Bx.	7, CLAYEY, GRAVELLY SAND ; red SHALE.	g(SC-SM)		5 15 50/2"				
					B	orehole terminated at 16.2 ft		Drilling Co					
		P		1		lient: Wolf Architecture rill Start: 6/2/2022		Drill Equip Driller: B		: Geoprobe 6712	וט		Page: 1 of 1

						LOG OF BC	DREHO	LE BH	1-8					
					e Station 221042	Elevation: 120.3 ft MLLW Horizontal Datum: NAD8 Latitude: 57.79712 °N	3 AKSP Zone	e 5 e: 152.38949	9°W		Logged By: KL Reviewed By: CK Review Date: 6/27/2022			
Depth (19.2 ft)	Drill Method	Sample Type	Recovery	Sample #	Soil Classification		Symbol	Graphic Log	Blows/ 6 in.	 Blows pe Salinity p Moisture 10 20 30 	pt %	Other Tests	Size Distribution	
0					Very loose PEAT ; PT .		PT	********* ********* ******************						
1-	HSA					poorly graded SAND; SP.	SP							
2-3-	-				Loose, dark brown orga fragments.	nic SILT; OL . With SHALE	OL		0					
4-	HSA	Sh		1	Dense, brownish gray S SAND ; (GC-GM)s . Sub-a 3/4-inch). With Fracture				0 5 9					
5-	HSA	Sh		2			(GC-GM)s		9 15 15					
7- 8- 9-	HSA	Sh		3		ILTY, CLAYEY, GRAVELLY ngular gravel (max. 2-inch). Ind COBBLES.			14 23 15		• • • • • • • • • • • • • • • • • • •		Fines = 37.7%	
10-	A HSA	Sh		4					6 13					
12-	HSA		8888						16					
13-	HSA						g(SC-SM)							
14 -	HSA		55555											
16-	HSA	Sh		5					7 10 15					
17-														
18-	¥	Ch		6	SHALE; Bx.		Dv		38 15					
19-	1	Sh		0			Bx	$\langle X \rangle$	50/2"					
		P]	1	N Cli	rehole terminated at 19.2 ft ent: Wolf Architecture ill Start: 6/2/2022		Drilling Co Drill Equip Driller: B	ment:		ery Drillin 6712DT	g	Page: 1 of 1	

					LOG OF BC	DREHO	LE BH	1-9								
				e Station 221042	Elevation: 121.1 ft MLLW Horizontal Datum: NAD83 Latitude: 57.79693 °N	3 AKSP Zone	e 5 e: 152.39011	1 °W			Review	Logged By: KL Reviewed By: CK Review Date: 6/27/2022				
Drill Method	Sample Type	Recovery		Soil Classification		Symbol	Graphic Log	Blows/ 6 in.		Salinity Moistui		Other Tests	Size Distribution			
-				Very loose PEAT ; PT .		РТ	***************************************									
HSA				Loose, brown organic SI	LT; OL. With ROOTS.	OL	******									
HSA				SAND; g(SC-SM). Sub-ar With COBBLES.	LTY, CLAYEY, GRAVELLY ngular gravel (max. 1.5-inch).			3 19								
HSA	Sh		1		CLAYEY, GRAVELLY SAND; ravel (max. 2-inch). With			17 10	0							
HSA						g(SC-SM)		4 9 10								
_	Sh		2					12			I I I I I I I I I I I					
HSA	Sh		3	Dense, brownish gray SI GRAVEL; s(GC-GM). (ma SHALE.	LTY, CLAYEY, SANDY ax. 2-inch). With Fractured	s(GC-GM)	0000 0000 0000	6 9 12			 					
HSA		8888						12								
HSA	Sh		4	Dense, brownish gray Si GRAVEL; (SC-SM)g. Sub- 2-inch). With Fractured				4 9 13 18								
HSA						(SC-SM)g										
- SA	7							-								
HSA	Sh		5		CLAYEY, GRAVELLY SAND ; ravel (max. 1-inch). With	g(SC-SM)		4 10 13								
_	Sh	8888	6	SHALE; Bx .		Bx		50/3"								

APPENDIX B — SUMMARY OF SAMPLE CHARACTERISTICS

Summary of Sample Characteristics

Client:Wolf ArchitectureProject:Kodiak Fire StationProject #:221042

ENGINEERS, INC.

														1110.		
Sample Borehc				Sample	Liqu	Plas	Gra	dation	(%)	Σ		Sa	Σ	Pa	~	ę
Borehole	Sample #	From	То	ple Method	Liquid Limit (%)	Plastic Limit (%)	Gravel	Sand	Fines*	Max Particle Size (in)	Laboratory Classification*	Salinity (ppt)	Moisture (%)	Particle Shape	Angularity	Other Tests**
BH-1	1	3.5	4.5	Sh						1/2	(SC-SM)g		11		А	
BH-1	2	6	7	Sh						3/4	(SC-SM)g		9		SA	
BH-1	3	8	9	Sh			19.4	35.9	44.7	1/2	(SC-SM)g		9		А	
BH-1	4	10.5	11.5	Sh						1.5	s(GC-GM)		8		SA	
BH-1	5	14	14.3	Sh						1	Bx		6		А	
BH-2	1	3.5	4.5	Sh						3/4	g(SC-SM)		9		SA	
BH-2	2	6	7	Sh						1	g(SC-SM)		7		SA	
BH-2	3	8.5	9.5	Sh						1.5	g(SC-SM)		8		A	
BH-2	4	11	12	Sh						1.5	s(GC-GM)		8		SA	
BH-2	5	15	15.2	Sh						1.5	Bx		1		SA	
BH-3	1	0.5	1	Sh							SP		34			
BH-3	2	3.5	4.5	Sh			36.7	36.5	26.8	2.5	s(GC-GM)		9		A	
BH-3	3	6	7	Sh						2	s(GC-GM)		5		SA	
BH-3	4	8.5	9.5	Sh						1.5	g(SC-SM)		8		SA	
BH-3	5	11	12	Sh						1	s(GC-GM)		8		SA	
BH-3	6	15.5	16.5	Sh						1	s(GC-GM)		7		SA	
BH-3	7	20.5	21.5	Sh						2	(GC-GM)s		6		SA	
BH-4	1	2.5	3	Sh							OL		37			
BH-4	2	3.5	4.5	Sh						1.5	(SC-SM)g		9		SA	
BH-4	3	6	7	Sh	24	19				1	(SC-SM)g		10		SA	
BH-4	4	8.5	9.5	Sh			19.1	37.3	43.6	1	(SC-SM)g		10		SA	
BH-4	5	10.5	11.5	Sh						1	g(SC-SM)		10		SR-SA	
BH-4	6	15	15.2	Sh							Bx		1			
BH-5	1	1	1.5	Sh							OL		153			
BH-5	2	3.5	4.5	Sh						1.5	g(SC-SM)		9		SA	
BH-5	3	6	7	Sh						3/4	g(SC-SM)		10		SA	
BH-5	4	8.5	9.5	Sh						1	(SC-SM)g		9		SA	
BH-5	5	11	12	Sh						1.5	(SC-SM)g		7		SA	
BH-5	6	16	17	Sh						1.5	(SC-SM)g		7		SA	

*Fines type and content estimated with ASTM D2488 when ASTM D422 or D4318 were not performed

**Other tests: DEN = Bulk Density, SPG = Specific Gravity, HYD = Hydrometer, CONSL = Consolidation, UCS = Unconfined Compression Strength, TRIAX = Triaxial Page 1 of 2

Summary of Sample Characteristics

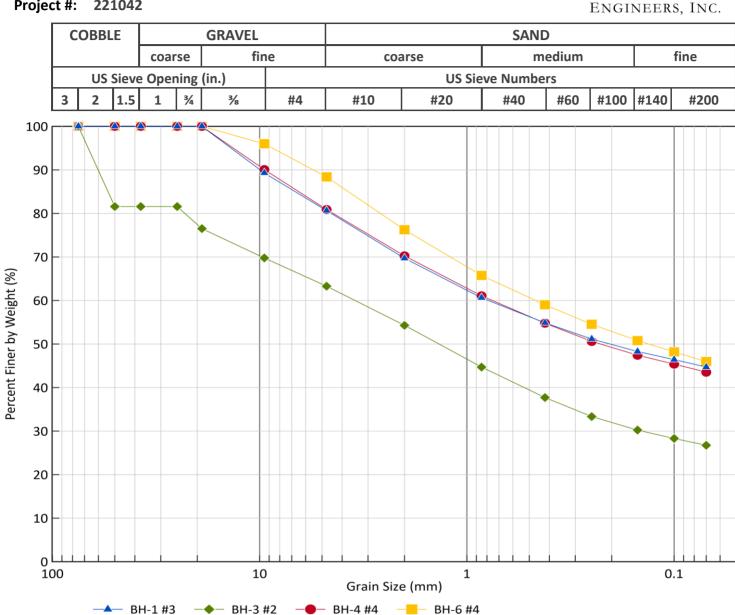
Client:Wolf ArchitectureProject:Kodiak Fire StationProject #:221042

ENGINEERS, INC.

Bo				San	Liq	Pla	Gra	dation	(%)	7	Ci L	S	z	Ра		of
Borehole	Sample #	From	То	Sample Method	Liquid Limit (%)	Plastic Limit (%)	Gravel	Sand	Fines*	Max Particle Size (in)	Laboratory Classification*	Salinity (ppt)	Moisture (%)	Particle Shape	Angularity	Other Tests**
BH-5	7	18.5	18.7	Sh							Bx					
BH-6	1	6.5	7	Sh							OL		32			
BH-6	2	7.5	8	Sh							CL-ML		31			
BH-6	3	11.5	12	Sh						1	g(SC-SM)		12		SR-SA	
BH-6	4	16	17	Sh			11.6	42.4	46.0	1/2	SC-SM		10		SA	
BH-6	5	20.5	21.5	Sh						1.5	g(SC-SM)		8		SR-SA	
BH-6	6	25	25.3	Sh						3/4	Bx		2		A	
BH-7	1	6	7	Sh						1	g(SC-SM)		13		SA	
BH-7	2	8.5	9.5	Sh						1	g(SC-SM)		11		SR-SA	
BH-7	3	11	12	Sh	22	15				1	(SC-SM)g		10		SR-SA	
BH-7	4	15.5	16	Sh						1.5	g(SC-SM)		8		SA	
BH-7	5	16	16.2	Sh						1	Bx		2		SA	
BH-8	1	3.5	4.5	Sh						2	g(SC-SM)		10		SA	
BH-8	2	6	7	Sh						2	(GC-GM)s		9		SA	
BH-8	3	8	9	Sh						2	g(SC-SM)		8		SR-SA	
BH-8	4	10.5	11.5	Sh						1.5	g(SC-SM)		8		SR-SA	
BH-8	5	15.5	16.5	Sh						1	g(SC-SM)		8		SR-SA	
BH-8	6	18.5	19.2	Sh						1	(GC-GM)s		10		A	
BH-9	1	3.5	4.5	Sh						1.5	g(SC-SM)		9		SA	
BH-9	2	6	7	Sh						1	g(SC-SM)		10		SA	
BH-9	3	8.5	9.5	Sh						1.5	s(GC-GM)		8		SA	
BH-9	4	11	12	Sh						2.5	(SC-SM)g		7		SA	
BH-9	5	15.5	16.5	Sh						1	g(SC-SM)		7		SR-SA	
BH-9	6	17.5	17.8	Sh						1	Bx		5		SA	

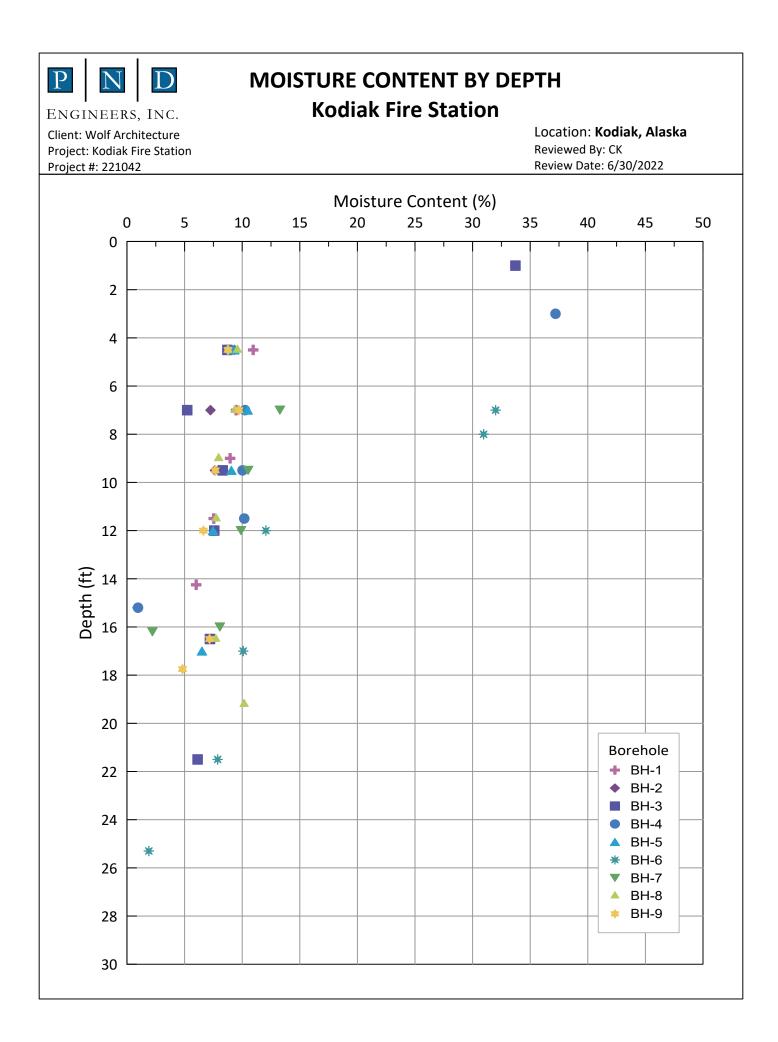
53 samples

APPENDIX C — GRAIN SIZE DISTRIBUTION



Grain Size Distribution

Client: **Wolf Architecture** Project: **Kodiak Fire Station**


Project #: 221042

	Sample				Gra	dation			
Borehole	#	From	То	Laboratory Classification*		Sand	Fines	D50	P10
BH-1	3	8	9	(SC-SM)g	19.4	35.9	44.7	0.2	69.7
BH-3	2	3.5	4.5	s(GC-GM)	36.7	36.5	26.8	1.4	54.3
BH-4	4	8.5	9.5	(SC-SM)g	19.1	37.3	43.6	0.2	70.3
BH-6	4	16	17	SC-SM	11.6	42.4	46.0	0.1	76.3

APPENDIX D — MOISTURE CONTENT BY DEPTH

APPENDIX E — CORRECTED SPT BLOW COUNTS

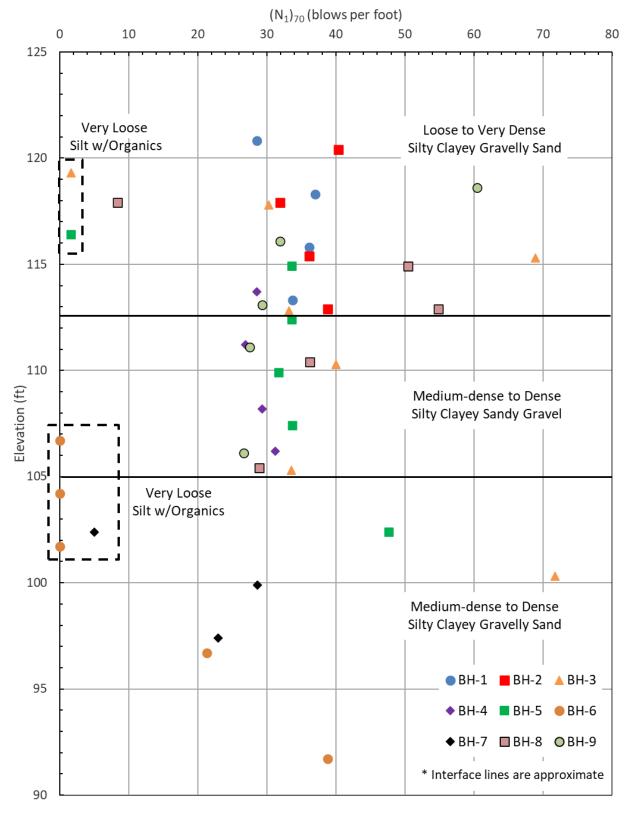
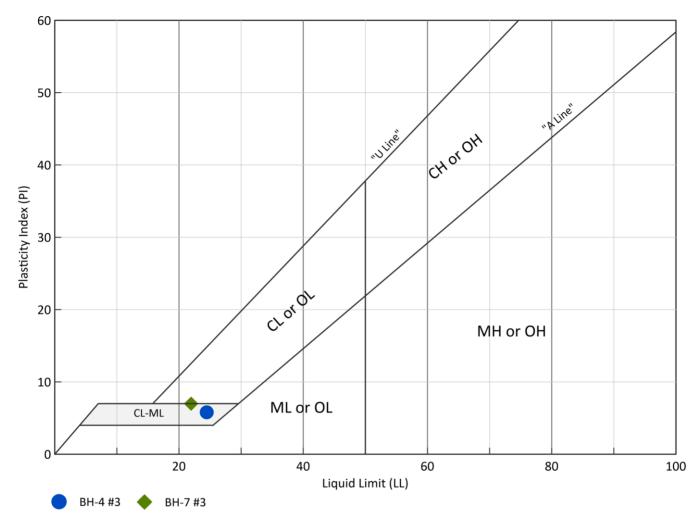


Figure E- 1. Corrected SPT Blow Counts $(N_1)_{70}$ vs. Elevation at the project site.


APPENDIX F — ATTERBERG LIMITS

Atterberg Test Results

Borehole	Sample #	From	То	Moisture %	LL	PL	PI	Soil Type
BH-4	3	6	7	10.25%	24.5	18.67	5.8	CL-ML
BH-7	3	11	12	9.89%	21.9	14.96	7.0	CL-ML

Office Locations

1506 West 36th Avenue Anchorage, AK 99503 907-561-1101

9360 Glacier HWY, Suite 100 Juneau, AK 99801 907-586-2093

1736 Fourth Ave. S Seattle, WA 98134 206-624-1387

625 Cobb Street, Suite 202 Palmer, AK 99645 907-707-1081

19500 State HWY 249, Suite 655 Houston, TX 77070 832-930-4830

920 SW 6th Ave., Floor 12 Portland, OR 97204 503-912-4615