DOWNTOWN KODIAK SEWER MAIN \& LIFT STATION 2 FORCE MAIN PIPE EVALUATION

EXISTING GRAVITY MAIN CAPACITY LOWER MILL BAY TO MARINE WAY EAST
POSSIBLE UPSIZING OF THE MAIN FROM LOWER MILL BAY TO MARINE WAY EAST
EXISTING GRAVITY MAIN CAPACITY FROM OVERFLOW TO MARINE WAY WEST

DOWNTOWN KODIAK SEWER MAIN \& LIFT STATION 2 FORCE MAIN PIPE EVALUATION

EXISTING GRAVITY MAIN CAPACITY FROM REZANOF TO LIFT STATION 2 - MARINE WAY WEST

PROPOSED LIFT STATION 2 FORCE MAIN - MARINE WAY EAST (WITH 4-INCH OVERFLOW)

Diameter (Inches)	Pipe Type Class / SDR	Discharge (GPM)	Pipe Inside Diameter (Inches)	Flow Velocity (FPS)	Pipe Length (Feet)	Hazen Williams C-Factor	Frictional Head Loss (Feet)	Total Dynamic Head (Feet)
8 (Existing)	DIP CL52	800	8.390	4.64	550	130	5.37	24.69
8	HDPE SDR21	800	7.754	5.44	550	140	6.87	26.19
8	HDPE SDR17	800	7.550	5.73	550	140	7.82	27.14
8	HDPE SDR11	800	6.963	6.74	550	140	11.60	30
10	HDPE SDR21	800	9.665	3.50	550	140	2.35	21.67
10	HDPE SDR17	800	9.410	3.69	550	140	2.68	22.00
10	HDPE SDR11	800	8.679	4.34	550	140	2.97	23.29

PROPOSED LIFT STATION 2 FORCE MAIN - MARINE WAY EAST (WITH 6-INCH OVERFLOW)
Static Head = 19.32

Diameter (Inches)	Pipe Type Class / SDR	Discharge (GPM)	Pipe Inside Diameter (Inches)	Flow Velocity (FPS)	Pipe Length (Feet)	Hazen Williams C-Factor	Frictional Head Loss (Feet)	Total Dynamic Head (Feet)
8	DIP CL52	1,300	8.390	7.54	550	130	13.20	32.52
12	DIP CL52	1,300	12.450	3.43	550	140	1.69	21.01
12	HDPE SDR21	1,300	11.463	4.04	550	140	2.52	21.84
12	HDPE SDR17	1,300	11.160	4.26	550	140	2.87	22.19
12	HDPE SDR11	1,300	10.293	5.01	550	140	4.26	23.58
14	HDPE SDR21	1,300	11.301	4.16	550	140	2.70	22.02
14	HDPE SDR17	1,300	12.253	3.54	550	140	1.82	21.14
14	HDPE SDR11	1,300	12.586	3.35	550	140	1.60	20.92

AC Pipe Inside Diameters			
Nominal	Class 100	Class 150	Class 200
4	4.00	4.00	4.00
6	6.00	5.85	5.70
8	8.00	7.85	7.60
10	10.00	10.00	9.63
12	12.00	12.00	11.56
14	13.59	14.00	13.59
16	15.50	16.00	15.50

MANNING'S FORMULA

$\mathrm{Q}=$ Discharge (cu. ft./sec.)
A = Cross-sectional Area of Flow (sq. ft.)
$\mathrm{n}=$ Coefficient of Roughness
R = Hydraulic Radius (ft.)
$\mathrm{S}=$ Slope of Pipe ($\mathrm{ft} . / \mathrm{ft}$.)
Hydraulic Radius
$R=A / P$
A = Cross-sectional Area of Flow (sq. ft.)
P = Wetted perimeter (ft.)

Partially Full Pipe Flow Calculations - U.S. Units
I. Calculation of Discharge, Q, and average velocity, V
for pipes less than half full
Instructions: Enter values in blue boxes. Spreadsheet calculates values in yellow boxes

Inputs		in	Calculations		
Pipe Diameter, $\mathbf{D}=$	12		Pipe Diameter, $\mathbf{D}=$	1	$f t$
Depth of flow, $\mathbf{y}=$ (must have $\mathrm{y} \leq \mathrm{D} / 2$)	4.8	in	Pipe Radius, $\mathbf{r}=$	0.5	ft
			Circ. Segment Height, $\mathbf{h}=$	0.4	ft
Manning					
roughness, $\mathbf{n}_{\text {full }}=$	0.012		Central Angle, $\boldsymbol{\theta}=$	2.74	radians
Channel bottom		$\mathrm{ft} / \mathrm{ft}$	Cross-Sect. Area, $\mathbf{A}=$	0.29	ft^{2}
slope, $\mathbf{S}=$	0.0039				
			Wetted Perimeter, $\mathbf{P}=$	1.4	ft
y/D $=$	0.400		Hydraulic Radius, $\mathbf{R}=$	0.21	ft
$n / n_{\text {full }}=$	1.27		Discharge, $\mathbf{Q}=$	0.641	cfs
$\mathrm{n}=$	0.015		Ave. Velocity, $\mathbf{V}=$	2.19	$\mathrm{ft} / \mathrm{sec}$
			pipe \% full $\left[\left(A / A A_{\text {til }}\right) *\right.$ 100\%] $=$	37.35\%	

Calculations

If $0<y / D \leq 0.03$, then $\mathrm{n} / \mathrm{n}_{\text {full }}=$	2.33
If $0.03<\mathrm{y} / \mathrm{D} \leq 0.1$, then $\mathrm{n} / \mathrm{n}_{\text {tull }}=$	1.73
If $0.1<y / D \leq 0.2$, then $\mathrm{n} / \mathrm{n}_{\text {full }}=$	1.40
If $0.2<y / D \leq 0.3$, then $\mathrm{n} / \mathrm{n}_{\text {tull }}=$	1.29
If $0.3<\mathrm{y} / \mathrm{D} \leq 0.5$, then $\mathrm{n} / \mathrm{n}_{\text {tull }}=$	1.27

Equations used for calculations:

$$
\begin{aligned}
& r=D / 2 \\
& h=y
\end{aligned}
$$

$$
\theta=2 \arccos \left(\frac{\mathrm{r}-\mathrm{h}}{\mathrm{r}}\right)
$$

$$
\mathrm{A}=\frac{\mathrm{r}^{2}(\theta-\sin \theta)}{2}
$$

$$
\mathrm{P}=\mathrm{r} * \theta
$$

$R=A / P \quad$ (hydraulic radius)
$\mathrm{Q}=(1.49 / \mathrm{n})(\mathrm{A})\left(\mathrm{R}^{2 / 3}\right)\left(\mathrm{S}^{1 / 2}\right) \quad$ (Manning Equation)
$V=Q / A$
287.30

Equations used to calculate $\mathbf{n} / \mathbf{n}_{\text {full }}$:		
$0<y / D \leq 0.03$	$n / n_{\text {fill }}=$	$1+(y / D)(1 / 0.3)$
$0.03<y / D \leq 0.1$	$n / n_{\text {fll }}=$	$1.1+(y / D-0.03)(12 / 7)$
$0.1<\mathrm{y} / \mathrm{D} \leq 0.2$	$n / n_{\text {tul }}=$	$1.22+(y / D-0.1)(0.6)$
$0.2<y / D \leq 0.3$	$n / n_{\text {fill }}=$	1.29
$0.3<y / D \leq 0.5$	$n / n_{\text {fill }}=$	$1.29-(y / D-0.3)(0.2)$

Copyright © 2011 Harlan H. Bengtson. All Rights Reserved.

Partially Full Pipe Flow Calculations - U.S. Units
II. Calculation of Discharge, Q, and average velocity, V
for pipes more than half full

Equation used for $n / n_{\text {full }}: n / n_{\text {tull }}=\mathbf{1 . 2 5}$ - (yID -0.5)*0.5 (for $\left.0.5 \leq y / D \leq 1\right)$

Equations used for calculations:

$$
\begin{aligned}
& \mathrm{h}=2 \mathrm{r}-\mathrm{y} \\
& \theta=2 \arccos \left(\frac{\mathrm{r}-\mathrm{h}}{\mathrm{r}}\right) \\
& \mathrm{A}=\pi \mathrm{r}^{2}-\frac{\mathrm{r}^{2}(\theta-\sin \theta)}{2} \\
& \mathrm{P}=2 \pi \mathrm{r}-\mathrm{r}^{*} \theta \\
& \mathrm{R}=\mathrm{A} / \mathrm{P} \\
& \mathrm{Q}=(1.49 / \mathrm{n})(\mathrm{A})\left(\mathrm{R}^{2 / 3}\right)\left(\mathrm{S}^{1 / 2}\right) \quad \text { (Manning Equation) } \\
& \mathrm{V}=\mathrm{Q} / \mathrm{A} \\
& \text { (hydraulic radius) } \\
& \text { 962.1466248 }
\end{aligned}
$$

Copyright © 2011 Harlan H. Bengtson. All Rights Reserved.

Partially Full Pipe Flow Calculations - U.S. Units
III. Calculation of Normal Depth for Pipes Less Than Half Full
Instructions: Enter values in blue boxes. Spreadsheet calculates values in yellow boxes

Inputs		
Pipe Diameter, $\mathbf{D}=$	8.5	in
Manning roughness, $\mathbf{n}_{\text {full }}=$	0.013	
Channel bottom slope, $\mathbf{S}=$	0.0072	$\mathrm{ft} / \mathrm{ft}$
Volumetric Flow Rate, $\mathbf{Q}=$	1	cfs
Iterative (trial \& error) Solution:		
(Select values of y_{0}, to find the value of y_{0} that makes $\left(A^{*} \mathrm{R}^{2 / 3}\right) / n$ as close to the target value as possible)		

Calculations	$\mathrm{h}=\mathrm{y}$	
Pipe Diameter, $\mathrm{D}=0.708333$	ft	$\theta=2 \arccos \left(\frac{\mathrm{r}-\mathrm{h}}{\mathrm{r}}\right)$
Pipe radius, $\mathrm{r}=$	0.4	ft
The Manning equation can be rearranged to:	$\mathrm{A}=\frac{\mathrm{r}^{2}(\theta-\sin \theta)}{2}$	
	$\mathrm{P}=\mathrm{r}^{*} \theta$	

$R=A / P$
(hydraulic radius)

$$
\begin{aligned}
& \mathrm{Q}=(1.49 / \mathrm{n})(\mathrm{A})\left(\mathrm{R}^{2 / 3}\right)\left(\mathrm{S}^{1 / 2}\right) \quad \text { (Manning Equation) } \\
& \mathrm{V}=\mathrm{Q} / \mathrm{A}
\end{aligned}
$$

Partially Full Pipe Flow Calculations - U.S. Units

IV. Calculation of Normal Depth for Pipes More Than Half Full

Instructions: Enter values in blue boxes. Spreadsheet calculates values in yellow boxes

Volumetric Flow Rate, $\mathbf{Q}=\quad 18$ cfs

Iterative (trial \& error) Solution
(Select values of y_{0}, to find the value of y_{0} that makes $\left(A^{\star} R^{2 / 3}\right) / n$ as close to the target value as possible)

$\mathrm{y}_{0}, \mathrm{ft}$	h, ft	θ, radians	$\mathrm{A}, \mathrm{ft}^{2}$
3	1.00	2.094	10.11
2	2.00	3.142	6.28
2.5	1.50	2.636	8.26
2.51	1.49	2.626	8.30
2.52	1.48	2.616	8.34
2.53	1.47	2.605	8.38

$\mathrm{Q} /\left(1.49^{*} \mathrm{~S}^{1 / 2}\right)=\left(\mathrm{A}^{*} \mathrm{R}^{2 / 3}\right) / \mathrm{n}$

 for $\left(A^{*} \mathrm{R}^{2 / 3}\right) / n$
difference from

n	P, ft	$\left(\mathrm{A}^{*} \mathrm{R}^{2 / 3}\right) / \mathrm{n}$	target value
0.0124	8.38	926.0	228.5
0.0138	6.28	457.0	-240.5
0.0131	7.29	687.3	-10.2
0.0130	7.31	692.1	-5.4
0.0130	7.34	696.9	-0.6
0.0130	7.36	701.7	4.2

Equations used for calculations:
$r=D / 2$
$h=2 r-y$
$\theta=2 \arccos \left(\frac{\mathrm{r}-\mathrm{h}}{\mathrm{r}}\right)$
$\mathrm{A}=\pi \mathrm{r}^{2}-\frac{\mathrm{r}^{2}(\theta-\sin \theta)}{2}$
$\mathrm{P}=2 \pi \mathrm{r}-\mathrm{r}^{*} \theta$

Partially Full Pipe Flow Parameters (More Than Half Full)

$$
\mathrm{R}=\mathrm{A} / \mathrm{P} \quad \text { (hydraulic radius) }
$$

$$
\mathrm{Q}=(1.49 / n)(A)\left(\mathrm{R}^{2 / 3}\right)\left(\mathrm{S}^{1 / 2}\right) \quad \text { (Manning Equation) }
$$

$$
\mathrm{V}=\mathrm{Q} / \mathrm{A}
$$

NOTE: For $\mathrm{Q}=18 \mathrm{cfs}$, this set of calculations shows that $\mathrm{y}_{0}=2.52 \mathrm{ft}$
(accurate to 3 significant figures)

NOTE: For $0.5 \leq y / D \leq 1: n / n_{\text {full }}=1.25-(y / D-0.5)^{*} 0.5$ (see graph below)

