DOWNTOWN KODIAK SEWER MAIN & LIFT STATION 2 FORCE MAIN PIPE EVALUATION

						Depth Full =	0.4	Depth Full =	0.8
EXISTING GRAVITY MAIN CAPACITY LOWER MILL	(< 50%	s Full)	(≥ 50% Full)						
	Diameter	Pipe Class /	Slope	Pipe Inside	Manning	Depth of Flow	Flow at 0.4	Depth of Flow	Flow at 0.8
Pipe Segment Description	(Inches)	SDR	(Rise/Run)	Dia. (Inches)	n-Value	(inches)	Full (GPM)	(inches)	Full (GPM)
MH on Lower Mill Bay Road to MH at L109	12	AC 150	0.0039	12.00	0.012	4.8	288	9.6	964
MH at L109 to MH NW of Carolyn	12	AC 150	0.0039	12.00	0.012	4.8	288	9.6	964
MH NW of Carolyn St to MH at Carolyn St	12	AC 150	0.0023	12.00	0.012	4.8	221	9.6	740
MH at Carolyn Street to MH at E. Rezanof	12	AC 150	0.0039	12.00	0.012	4.8	288	9.6	964
MH at E. Rezanof to MH in Easement	12	AC 150	0.0017	12.00	0.012	4.8	190	9.6	636
MH in Easement to MH at Kashevarof Cir	12	AC 150	0.0065	12.00	0.012	4.8	372	9.6	1,244
MH at Kashevarof Cir to MH at 2nd Easement	12	AC 150	0.1072	12.00	0.012	4.8	1,509	9.6	5,053
MH at 2nd Easement to MH at Center St	12	AC 150	0.0189	12.00	0.012	4.8	634	9.6	2,123
MH at Center St to MH at Mill Bay	12	AC 150	0.0087	12.00	0.012	4.8	430	9.6	1,439
MH at Mill Bay to MH at Mission Rd	12	AC 150	0.0055	12.00	0.012	4.8	343	9.6	1,148
MH at Mission Rd to MH NW of Marine Way	12	AC 150	0.0125	12.00	0.012	4.8	514	9.6	1,723
MH NW of Marine Way to MH at Marine Way East	12	AC 150	0.0898	12.00	0.012	4.8	1,381	9.6	4,625

						Depth Full =	0.4	Depth Full =	0.8	
POSSIBLE UPSIZING OF THE MAIN FROM LOWER MILL B	AY TO MARIN	IE WAY EAST				(< 50%	6 Full)	(≥ 50%	(≥ 50% Full)	
	Diameter	Pipe Class /	Slope	Pipe Inside	Manning	Depth of Flow	Flow at 0.4	Depth of Flow	Flow at 0.8	Increase of Flow
Pipe Segment Description	(Inches)	SDR	(Rise/Run)	Dia.(Inches)	n-Value	(inches)	Full (GPM)	(inches)	Full (GPM)	(Flow at 0.8 Full)
MH on Lower Mill Bay Road to MH at L109	16	CL50 DIP	0.0039	16.70	0.012	6.68	695	13.36	2,327	1,363
MH at L109 to MH NW of Carolyn	16	CL50 DIP	0.0039	16.70	0.012	6.68	695	13.36	2,327	1,363
MH NW of Carolyn St to MH at Carolyn St	16	CL50 DIP	0.0023	16.70	0.012	6.68	534	13.36	1,787	1,047
MH at Carolyn Street to MH at E. Rezanof	16	CL50 DIP	0.0039	16.70	0.012	6.68	695	13.36	2,327	1,363
MH at E. Rezanof to MH in Easement	16	CL50 DIP	0.0017	16.70	0.012	6.68	459	13.36	1,536	900
MH in Easement to MH at Kashevarof Cir	16	CL50 DIP	0.0065	16.70	0.012	6.68	897	13.36	3,004	1,760
MH at Kashevarof Cir to MH at 2nd Easement	16	CL50 DIP	0.1072	16.70	0.012	6.68	3,643	13.36	12,200	7,146
MH at 2nd Easement to MH at Center St	16	CL50 DIP	0.0189	16.70	0.012	6.68	1,530	13.36	5,124	3,002
MH at Center St to MH at Mill Bay	16	CL50 DIP	0.0087	16.70	0.012	6.68	1,037	13.36	3,473	2,034
MH at Mill Bay to MH at Mission Rd	16	CL50 DIP	0.0055	16.70	0.012	6.68	827	13.36	2,771	1,623
MH at Mission Rd to MH NW of Marine Way	16	CL50 DIP	0.0125	16.70	0.012	6.68	1,242	13.36	4,159	2,436
MH NW of Marine Way to MH at Marine Way East	16	CL50 DIP	0.0898	16.70	0.012	6.68	3,334	13.36	11,165	6,540

						Depth Full =	0.4	Depth Full =	0.8
EXISTING GRAVITY MAIN CAPACITY FROM OVERFI	EXISTING GRAVITY MAIN CAPACITY FROM OVERFLOW TO MARINE WAY WEST								
				Pipe Inside					
	Diameter	Pipe Class /	Slope	Diameter	Manning	Depth of Flow	Flow at 0.4	Depth of Flow	Flow at 0.8
Pipe Segment Description	(Inches)	SDR	(Rise/Run)	(Inches)	n-Value	(inches)	Full (GPM)	(inches)	Full (GPM)
MH at Overflow to 1st MH SW of Overflow	8	CL50 DIP	0.0606	8.5	0.012	3.4	452	6.8	1,515
1st MH SW of Overflow to MH NE of Thorsheim	8	CL50 DIP	0.0121	8.5	0.012	3.4	202	6.8	676
MH NE of Thorsheim to MH at Thorsheim	8	CL50 DIP	0.0299	8.5	0.012	3.4	318	6.8	1,063
MH at Thorsheim to MH at Yukon Street	8	CL50 DIP	0.0253	8.5	0.012	3.4	292	6.8	979
MH at Yukon Street to MH at Y Intersection	10	CL50 DIP	0.0053	10.5	0.012	4.2	236	8.4	790
MH at Y Intersection to 1st MH Past Center	10	CL50 DIP	0.0030	10.5	0.012	4.2	176	8.4	589
1st MH Past Center to 2nd MH Past Center	10	CL50 DIP	0.0038	10.5	0.012	4.2	200	8.4	668
2nd MH Past Center fo MH at Marine Way	10	CL50 DIP	0.0038	10.5	0.012	4.2	199	8.4	668

DOWNTOWN KODIAK SEWER MAIN & LIFT STATION 2 FORCE MAIN PIPE EVALUATION

						Depth Full =	0.4	Depth Full =	0.8
EXISTING GRAVITY MAIN CAPACITY FROM	I REZANOF TO	LIFT STATION	2 - MARINE	WAY WEST		(< 50%	% Full)	(≥ 50%	Full)
				Pipe Inside					
	Diameter	Pipe Class /	Slope	Diameter	Manning	Depth of Flow	Flow at 0.4	Depth of Flow	Flow at 0.8
Pipe Segment Description	(Inches)	SDR	(Rise/Run)	(Inches)	n-Value	(inches)	Full (GPM)	(inches)	Full (GPM)
Rezanof MH to MH SE of Rezanof	12	DIP CL50	0.018	12.00	0.011	4.8	671	9.6	2,249
MH SE of Rezanof to Shelikof	12	AC 150	0.018	12.00	0.012	4.8	616	9.6	2,061
MH at Shelikof to MH at Liquor Store	12	AC 150	0.008	12.00	0.012	4.8	407	9.6	1,364
MH at Liquor Store to MH at Mecca Store	12	AC 150	0.005	12.00	0.012	4.8	336	9.6	1,124
MH at Mecca Store to MH at Wells Fargo	12	AC 150	0.005	12.00	0.012	4.8	335	9.6	1,123
MH at Wells Fargo to MH by LS2	12	AC 150	0.008	12.00	0.012	4.8	411	9.6	1,376

Static Head = 19.32

PROPOSED LIFT STATION 2 FORCE MAIN - MARINE WAY EAST (WITH 4-INCH OVERFLOW)

		·		•			1	
			Pipe Inside					Total Dynamic
	Pipe Type	Discharge	Diameter	Flow Velocity	Pipe Length	Hazen Williams	Frictional Head	Head
Diameter (Inches)	Class / SDR	(GPM)	(Inches)	(FPS)	(Feet)	C-Factor	Loss (Feet)	(Feet)
8 (Existing)	DIP CL52	800	8.390	4.64	550	130	5.37	24.69
8	HDPE SDR21	800	7.754	5.44	550	140	6.87	26.19
8	HDPE SDR17	800	7.550	5.73	550	140	7.82	27.14
8	HDPE SDR11	800	6.963	6.74	550	140	11.60	30.92
10	HDPE SDR21	800	9.665	3.50	550	140	2.35	21.67
10	HDPE SDR17	800	9.410	3.69	550	140	2.68	22.00
10	HDPE SDR11	800	8.679	4.34	550	140	3.97	23.29

PROPOSED LIFT STATION 2 FORCE MAIN - MARINE WAY EAST (WITH 6-INCH OVERFLOW)

PROPOSED LIFT STATION 2 FORCE MAIN -	Static Head =	19.32						
			Pipe Inside					Total Dynamic
	Pipe Type	Discharge	Diameter	Flow Velocity	Pipe Length	Hazen Williams	Frictional Head	Head
Diameter (Inches)	Class / SDR	(GPM)	(Inches)	(FPS)	(Feet)	C-Factor	Loss (Feet)	(Feet)
8	DIP CL52	1,300	8.390	7.54	550	130	13.20	32.52
12	DIP CL52	1,300	12.450	3.43	550	140	1.69	21.01
12	HDPE SDR21	1,300	11.463	4.04	550	140	2.52	21.84
12	HDPE SDR17	1,300	11.160	4.26	550	140	2.87	22.19
12	HDPE SDR11	1,300	10.293	5.01	550	140	4.26	23.58
14	HDPE SDR21	1,300	11.301	4.16	550	140	2.70	22.02
14	HDPE SDR17	1,300	12.253	3.54	550	140	1.82	21.14
14	HDPE SDR11	1,300	12.586	3.35	550	140	1.60	20.92

AC Pipe Inside Diameters							
Nominal	Class 100	Class 150	Class 200				
4	4.00	4.00	4.00				
6	6.00	5.85	5.70				
8	8.00	7.85	7.60				
10	10.00	10.00	9.63				
12	12.00	12.00	11.56				
14	13.59	14.00	13.59				
16	15.50	16.00	15.50				

MANNING'S FORMULA

 $Q = A *1.486/n * R^{2/3} * S^{1/3}$

Where; Q = Discharge (cu. ft./sec.)

A = Cross-sectional Area of Flow (sq. ft.)

n = Coefficient of RoughnessR = Hydraulic Radius (ft.)S = Slope of Pipe (ft./ft.)

Hydraulic Radius

R = A/P

Where; R = Hydraulic Radius (ft.)

A = Cross-sectional Area of Flow (sq. ft.)

P = Wetted perimeter (ft.)

I. Calculation of Discharge, Q, and average velocity, V for pipes less than half full

Instructions: Enter values in blue boxes. Spreadsheet calculates values in yellow boxes

Inputs

Manning

Calculations

Pipe Diameter, D =

0.012

roughness, n_{full} = Channel bottom

Depth of flow, y =

(must have $y \le D/2$)

slope, **S** =

0.0039

0.400 **y/D** = n/n_{full} 1.27

0.015

Pipe Diameter, **D** =

Pipe Radius, r =

Circ. Segment Height, h =

0.4

2.74

0.29

1.4

0.21

0.641

2.19

37.35%

ft/sec

radians

Central Angle, $\boldsymbol{\theta}$ =

Cross-Sect. Area, A =

Wetted Perimeter, **P** =

Hydraulic Radius, R =

Discharge, **Q** =

Ave. Velocity, **V** =

pipe % full [(A/A_{full})*100%] =

r = D/2

$$h = y$$

 $\theta = 2 \arccos \left(\frac{r - h}{r} \right)$

Equations used for calculations:

$$A = \frac{r^2(\theta - \sin \theta)}{2}$$

$$P = r * \theta$$

Partially Full Pipe Flow Parameters (Less Than Half Full)

$$Q = (1.49/n)(A)(R^{2/3})(S^{1/2})$$

(Manning Equation)

$$V = Q/A$$

287.30

Calculations

If $0 < y/D \le 0.03$, then $n/n_{full} =$

If $0.03 < y/D \le 0.1$, then $n/n_{full} =$

If $0.1 < y/D \le 0.2$, then $n/n_{tull} =$

If $0.2 < y/D \le 0.3$, then $n/n_{full} =$

If $0.3 < y/D \le 0.5$, then $n/n_{tull} =$

Equations used to	o calculate n/n full:	_
0 < y/D ≤ 0.03	n/n _{full} =	1 + (y/D)(1/0.3)
0.03 < y/D ≤ 0.1	n/n _{full} =	1.1 + (y/D - 0.03)(12/7)
0.1 < y/D ≤ 0.2	n/n _{full} =	1.22 + (y/D - 0.1)(0.6)
0.2 < y/D ≤ 0.3	n/n _{full} =	1.29
0.3 < y/D ≤ 0.5	n/n _{full} =	1.29 - (y/D - 0.3)(0.2)

II. Calculation of Discharge, Q, and average velocity, $\ensuremath{\mathsf{V}}$

for pipes more than half full

Equations used for calculations:

$$r = D/2$$

$$h = 2r - y$$

$$\theta = 2 \arccos \left(\frac{r - h}{r}\right)$$

$$A = \pi r^2 - \frac{r^2(\theta - \sin \theta)}{2}$$

$$P = 2\pi r - r^* \theta$$
Partially Full Pipe Flow Parameters (More Than Half Full)

$$R = A/P \qquad \qquad \text{(hydraulic radius)}$$

$$Q = (1.49/n)(A)(R^{2/3})(S^{1/2}) \qquad \text{(Manning Equation)}$$

$$V = Q/A \qquad \qquad P$$

$$962.1466248$$

Equation used for n/n_{full} : n/n_{full} = 1.25 - (y/D -0.5)*0.5 (for $0.5 \le y/D \le 1$)

Copyright © 2011 Harlan H. Bengtson. All Rights Reserved.

III. Calculation of Normal Depth for Pipes Less Than Half Full

Instructions: Enter values in blue boxes. Spre	adsheet calculates values in yellow boxes
<u>Inputs</u>	Calculations
Pipe Diameter, D = 8.5 in	Pipe Diameter, D = 0.708333 ft
Manning roughness, n _{full} = 0.013	Pipe radius, r = 0.4 ft
Channel bottom slope, S = 0.0072 ft/ft	The Manning equation can be rearranged to:
Volumetric Flow Rate, Q = 1 cfs	$Q/(1.49*S^{1/2}) = (A*R^{2/3})/n$
Iterative (trial & error) Solution: (Select values of y _o to find the value of y _o that makes	Q/(1.49*S ^{1/2}) = 7.909 = target value for (A*R ^{2/3})/n
(A*R ^{2/3})/n as close to the target value as possible)	difference from
y_0 , ft y_0/D θ , radians A, ft ²	n P. ft (A*R ^{2/3})/n target value

NOTE: For Q = 1 cfs, this set of calculations shows that $y_o = 0.35$ ft (accurate to 2 signif. Figures) because the "difference from target value" is less for $y_o = 0.35$ than for $y_o = 0.34$ or 0.36.

0.23

0.16

0.19

0.19

0.20

0.0157

0.0161

0.0164

0.0163

0.0163

0.0162

1.20

1.00

1.08

1.12

6.693

4.722

2.824

3.744

3.554

3.936

-1.217

-3.188

-5.085

-4.166

-4.355

-3.974

0.5

0.4

0.3

0.34

0.36

0.706

0.565

0.424

0.480

0.508

3.990

3.401

2.835

3.118

3.062

3.175

Equations used to calculate $\mathbf{n/n_{tull}}$: $0 < y/D \le 0.03 \qquad n/n_{tull} = 1 + (y/D)(1/0.3)$ $0.03 < y/D \le 0.1 \qquad n/n_{tull} = 1.1 + (y/D - 0.03)(12/7)$ $0.1 < y/D \le 0.2 \qquad n/n_{tull} = 1.22 + (y/D - 0.1)(0.6)$ $0.2 < y/D \le 0.3 \qquad n/n_{tull} = 1.29$ $0.3 < y/D \le 0.5 \qquad n/n_{tull} = 1.29 - (y/D - 0.3)(0.2)$

Equations used for calculations:

$$r = D/2$$

$$h = y$$

$$\theta = 2\arccos\left(\frac{r \cdot h}{r}\right)$$

$$A = \frac{r^2(\theta \cdot \sin\theta)}{2}$$

$$P = r \cdot \theta$$
Partially Full Pipe Flow Parameters (Less Than Half Full)

$$Q = (1.49/n)(A)(R^{2/3})(S^{1/2})$$
 (Manning Equation)

$$V = Q/A$$

Copyright © 2011 Harlan H. Bengtson. All Rights Reserved.

IV. Calculation of Normal Depth for Pipes More Than Half Full

(accurate to 3 significant figures)

NOTE: For $0.5 \le y/D \le 1$: $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$ (see graph below)

Copyright © 2011 Harlan H. Bengtson. All Rights Reserved.